Chapter 9
Technicalities: Classes, etc.

Bjarne Stroustrup

www.stroustrup.com/Programming

Overview

" (Classes
" [mplementation and interface
B Constructors

® Member functions
" Enumerations

" Operator overloading

Stroustrup/Programming 3

7 \
Classes

® The 1dea;

" A class directly represents a concept in a program

" If you can think of “it” as a separate entity, it is plausible that it
could be a class or an object of a class

" Examples: vector, matrix, input stream, string, FET, valve
controller, robot arm, device driver, picture on screen, dialog
box, graph, window, temperature reading, clock

" A class 1s a (user-defined) type that specifies how objects
of its type can be created and used

" |n C++ (as in most modern languages), a class 1s the key
building block for large programs

" And very useful for small ones also

" The concept was originally introduced in Simula67

Stroustrup/Programming 4

” \
Members.and member access——

" One way of looking at a class;

class X { /[this class” name is X
/I data members (they store information)
/] function members (they do things, using the information)

}s

" Example
class X {
public:
int m; // data member
int mf(int v) { int old = m; m=v; return old; } // function member

¥

X var; // varis a variable of type X

var.m = 7; /I access var’s data member m

int x = var.mf(9); Il call var’s member function mf()

Stroustrup/Programming)

7 \
Classes

" A class 1s a user-defined type

class X { /[this class” name is X

public: Il public members.-- that's the interface to users
// (accessible by all)
/I functions
/] types
/l data (often best kept private)
private: /[private members -- that’s the implementation details
// (accessible by members of this class only)
/I functions
/I types
I data
3

Stroustrup/Programming 6

7 \
Struct and class

" (Class members are private by default:

class X {
int mf();
.
3
" Means
class X {
private:
int mf();
I
3
" So
X x; /[variable x of type X

inty =x.mf(); // error: mfis private (i.e., inaccessible)

Stroustrup/Programming 7

7 \
Struct and class

" A struct 1s a class where members are public by default:

struct X {
int m;
A
3

" Means
class X {
public:
int m;
e :.
s

" structs are primarily used for data structures where the
members can take any value
Stroustrup/Programming 8

Date:

Crnariar ranting

Structs

my_birthday: y

m

I/ simplest Date (just data) d

struct Date {
int ym,d; // year, month, day
3

Date my_birthday; /I a Date variable (object)
my birthday.y = 12;
my_birthday.m = 30;

my_birthday.d =1950; // oops! (no day 1950 in month 30)

/[later in the program, we’ll have a problem

Stroustrup/Programming 9

Date:
my_birthday: y

Crnariar ranting

Structs

m

I/ simple Date (with a few helper functions for convenience) d
struct Date {

int ym,d; // year, month, day
3

Date my_birthday; /I a Date variable (object)

I helper functions.

void init_day(Date& dd, int y, int m, int d); // check for valid date and initialize
/[Note: this y, m, and d are local

void add_day(Date& dd, int n); // increase the Date by n days
s

init_day(my_birthday, 12, 30, 1950); // run time error.: no day 1950 in month 30

Stroustrup/Programming 10

” \
Date:

STIUCES . binday: y | $1950
m 12
/Il simple Date d 30
// guarantee initialization with constructor
// provide some notational convenience
struct Date {
int y,m,d; I year, month, day

Date(int y, int m, int d); // constructor. check for valid date and initialize
void add_day(int n); // increase the Date by n days

53

it

Date my_birthday; /I error: my_birthday not initialized
Date my_ birthday(12, 30, 1950); // oops! Runtime error

Date my_ day(1950, 12, 30); /I ok

my_day.add day(2); /[l January 1, 1951

my day.m = 14; // ouch! (now my_day is a bad date)

Stroustrup/Programming 11

VR

Date:
Classes o vinnasy:y | 1950
m 12
/[simple Date (control access) d 30

class Date {

int y,m,d; /[year, month, day
public:

Date(int y, int m, int d); // constructor. check for valid date and initialize

/ access functions.:

void add_day(int n); // increase the Date by n days
int month() { return m; }

int day() { return d; }

int year() { return y; }

3

IS

Date my_birthday(1950, 12, 30); /I ok

cout << my_birthday.month() << endl; // we can read
my_birthday.m = 14; // error: Date::m is private

Stroustrup/Programming 12

7 \
Classes

The notion of a “valid Date” is an important special case of the idea of a
valid value

We try to design our types so that values are guaranteed to be valid
" Or we have to check for validity all the time

A rule for what constitutes a valid value is called an “invariant™

" The invariant for Date (“Date must represent a date in the past, present, or future”) is
unusually hard to state precisely

" Remember February 28, leap years, etc.
If we can’t think of a good invariant, we are probably dealing with plain
data
® Jf so, use a struct

" Try hard to think of good invariants for your classes
" that saves you from poor buggy code

Stroustrup/Programming 13

” \
Date:

Classes ., vimday: v | 1950
m 12
30

/[simple Date (some people prefer implementation details last) d
class Date {
public:
Date(int yy, int mm, int dd); // constructor: check for valid date and
/[initialize
void add_day(int n); /[increase the Date by n days
int month();
o
private:
int y,m,d; Il year, month, day
5

Date::Date(int yy, int mm, int dd) /[definition; note ..
“member of

:y(yy), m(mm), d(dd) {/* ... */}; /I note: member initializers

void Date::add_day(intsltlrz) é{rﬁpipm’;/r /I definition

;r%ming (g

VR

Cl Date:

dSSCS my birthday: y 1950
12

/] simple Date (some people prefer implementation #&tails last) d 30

class Date {

public:

Date(int yy, int mm, int dd); // constructor. check for valid date and
/] initialize

void add_day(int n); /[increase the Date by n days
int month();
.
private:
int y,m,d; /[year, month, day
5

int month() { return m; } // error: forgot Date::
/I this month() will be seen as a global function
I/ not the member function, so can’t access members

int Date::season() {/* ... */} /[error: no member called season
Stroustrup/Programming 15

7 \
Classes

/[simple Date (what can we do in case of an invalid date?)
class Date {

public:
class Invalid { }; /] to be used as exception
Date(int y, int m, int d); /I check for valid date and initialize
1o
private:
int y,m,d; Il year, month, day
bool check(int y, int m, int d); // is (y,m,d) a valid date?
5
Date:: Date(int yy, int mm, int dd)
: y(yy), m(mm), d(dd) /I initialize data members
{

if (!check(y,m,d)) throw Invalid(); /] check for validity
}

Stroustrup/Programming 16

7 \
Classes

" Why bother with the public/private distinction?

" Why not make everything public?

® To provide a clean interface
" Data and messy functions can be made private

" To maintain an invariant
" Only a fixed set of functions can access the data

" To ease debugging
® Only a fixed set of functions can access the data
" (known as the “round up the usual suspects” technique)

® To allow a change of representation

" You need only to change a fixed set of functions

" You don’t really know who 1s using a public member
Stroustrup/Programming 17

” \
Enumerations

" An enum (enumeration) 1S a very simple user-defined
type, specifying its set of values (its enumerators)

" For example:

enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

5

Month m = feb;

m = 7; /[error: can’t assign int to Month

int n = m; /I ok: we can get the numeric value of a Month

Month mm = Month(7); /I convert int to Month (unchecked)

Stroustrup/Programming 18

” \
Enumerations

" Simple list of constants:

enum { red, green }; // the enum { } doesn t define a scope
int a=red; // red is available here
enum { red, blue, purple }; // error: red defined twice

" Type with list of constants

enum Color { red, green, blue, /* ... */ };
enum Month { jan, feb, mar, /* ... */ };

Month m1 = jan;

Month m2 = red; [l error: red isn’t a Month

Month m3 =7; [l error: 7 isn’t a Month

inti=ml; // ok: an enumerator is converted to its value, i==

Stroustrup/Programming 19

7 \
Enumerations — Values = =

" By default

/[the first enumerator has, the value. 0),

/[the next enumerator has the value “one plus the value of the

I/ enumerator before it”

enum { horse, pig, chicken }; // horse==0, pig==1, chicken==

" You can control numbering
enum { jan=1, feb, march /* ... */}; // feb==2, march==
enum stream_state { good=1, fail=2, bad=4, eof=8 };
int flags = fail+eof; // flags==10
stream_state s = flags; /[error.: can’t assign an int to a Stream_state
stream_state s2 = stream_state(flags); // explicit conversion (be careful!)

Stroustrup/Programming 20

VR

Smarter computing.

Classes 2alc:

/[simple Date (use Month type) my_birthday: y 1950
class Date { v 12
public: ; 30

enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
¥3
Date(int y, Month m, int d); // check for valid date and initialize
LR
private:
int y; /] year
Month m;
int d; /Il day
¥3

Date my_ birthday(1950, 30, Date::dec); // error: 2nd argument not a Month

Date my_birthday(1950, Date::dec, 30); // ok
§troustrup/Programm|ng 21

7 \
C On St Smarter computing.

class Date {

public:
/[
int day() const { return d; } // const member: can 't modify
void add_day(int n); I/ non-const member. can modify
Ji

55

Date d(2000, Date::jan, 20);
const Date ¢d(2001, Date::feb, 21);

cout << d.day() << " - " << cd.day() << endl; /I ok
d.add_day(1); // ok

cd.add_day(1); // error: cd is a const
Stroustrup/Programming 22

7 \
C On St Smarter computing.

//

Date d(2004, Date::jan, 7); /I'a variable
const Date d2(2004, Date::feb, 28); /I a constant
d2 = d; /[error: d2 is const

d2.add(1); /[error d2 is const

d=d2; /] fine

d.add(1); // fine

d2.1(); // should work if and only if f() doesn 't modify d2

/[how do we achieve that? (say that’s what we want, of course)

Stroustrup/Programming 23

Const member functions

/I Distinguish between functions that can modify (mutate) objects
/| and those that cannot (“const member functions)
class Date {
public:
AR
int day() const; /] get (a copy of) the day
5%
void add_day(int n); // move the date n days forward
VS

y5

const Date dx(2008, Month::nov, 4);
int d = dx.day(); // fine
dx.add_day(4); // error: can’t modify constant (immutable) date

Stroustrup/Programming

VR

Smarter computing.

24

Classes

" What makes a good interface?
" Minimal
" As small as possible

" Complete

" And no smaller

" Type safe

" Beware of confusing argument orders

® Const correct

Stroustrup/Programming 25

7 \
Classes

" Essential operations

" Default constructor (defaults to: nothing)
" No default if any other constructor is declared

" Copy constructor (defaults to: copy the member)
" Copy assignment (defaults to: copy the members)
" Destructor (defaults to: nothing)

" For example

Date d; /[error: no default constructor
Date d2 = d;// ok: copy initialized (copy the elements)
d=d2; /I ok copy assignment (copy the elements)

Stroustrup/Programming 26

7 \
Interfaces and “helper functions™

" Keep a class mterface (the set of public functions)
minimal
" Simplifies understanding
" Simplifies debugging
" Simplifies maintenance

" When we keep the class interface simple and
minimal, we need extra “helper functions™ outside

the class (non-member functions)
" E.g. == (equality) , != (inequality)
" next weekday(), next Sunday()

Stroustrup/Programming 27

” \
e e NG

Date next_Sunday(const Date& d)

{
/[access d using d.day(), d.month(), and d.year()

[l make new Date to return

§
Date next weekday(const Date& d) { /* ... */}

bool operator==(const Date& a, const Date& b)

d
return a.year()==b.year()
&& a.month()==b.month()
&& a.day()==b.day();
J

bool operator!=(const Date& a, const Date& b) { return !(a==b); }

Stroustrup/Programming 28

” \
o o e s e

" You can define almost all C++ operators for a
class or enumeration operands
" that’s often called “operator overloading™

enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

53
Month operator++(Month& m) // prefix increment operator
{
m = (m==dec) ? jan : Month(m+1); /[“wrap around
return m;
)

Month m = nov;
++m; // m becomes dec

++m; // m becomes jan
Stroustrup/Programming AY)

” \
o o e s e

You can define only existing operators
B Eg,+-*/%] 0! & <<=>>=

You can define operators only with their conventional number
of operands

" F.g.,no unary <= (less than or equal) and no binary ! (not)

An overloaded operator must have at least one user-defined
type as operand

" int operator+(int,int); /[error: you can’t overload built-in +

" Vector operator+(const Vector&, const Vector &); // ok

Advice (not language rule):
" Qverload operators only with their conventional meaning
" + should be addition, * be multiplication, [] be access, () be call, etc.

Advice (not language rule):
" Don’t overload unless you really have to

Stroustrup/Programming 30

Stron g enums

" Regular enums provide convenient aliases for
values which are a subrange of int:

enum Color {red, green, blue}; //red=—=0, green—1,
blue==2

with the type name (Color) exported to the
enclosing scope.

" Now C++11 allows other underlying classes to be
specified:

enum class Month : unsigned char {jan=1....};

which also defines a [class] scope. These are called
“strong’” enums.

01/15/15 Daugherity - C++11 Notes

Range-based for

" “For each int e in vector v, print the element’:
vector<int> v(3);

for(int e : v) cout << e << endl;

" We can use auto too, which 18 useful:

for(auto e : v) cout << e << endl;

" We can also say things like
for(int& e : v) e =-1;
to set each element to -1, since making e a reference

(with the &) makes it an lvalue (see pages 94-95).

01/15/15 Daugherity - C++11 Notes

