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Technicalities: Functions, etc.
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Ab StraCt Smarter computing.

" This lecture and the following present some technical
details of the language to give a slightly broader view
of C++’s basic facilities and to provide a more
systematic view of those facilities. This also acts as a
review of many of the notions presented so far, such
as types, functions, and initialization, and provides an
opportunity to explore our tool without adding new
programming techniques or concepts.
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Overview

Language Technicalities

Declarations
" Definitions
" Headers and the preprocessor
" Scope
Functions
" Declarations and definitions
" Arguments
" (Call by value, reference, and const reference

Namespaces
" “Using” declarations
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[Language technicalities

" Are anecessary evil
" A programming language is a foreign language

" When learning a foreign language, you have to look at the grammar and
vocabulary

" We will do this 1n this chapter and the next

" Because;:

" Programs must be precisely and completely specified
" A computer is a very stupid (though very fast) machine
" A computer can’t guess what you “really meant to say’ (and shouldn’t try to)
" So we must know the rules
® Some of them (the C++11 standard is 1,310 pages)
" However, never forget that
" What we study is programming
" Qur output 1s programs/systems
" A programming language is only a tool
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" Don’t spend your time on minor syntax and semantic 1ssues.
There 1s more than one way to say everything
" Just like in English

" Most design and programming concepts are universal, or at
least very widely supported by popular programming languages
" So what you learn using C++ you can use with many other languages

" [Language technicalities are specific to a given language

" But many of the technicalities from C++ presented here have obvious
counterparts in C, Java, C#, etc.
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Declarations

A declaration introduces a name into a scope.

A declaration also specifies a type for the named object.
Sometimes a declaration includes an initializer.

A name must be declared before it can be used in a C++ program.

Examples:
" inta=7; /[ an int variable named ‘a’ is declared
" const double cd = 8.7; /I a double-precision floating-point constant
" double sqrt(double); /I a function taking a double argument and
/[ returning a double result
" vector<Token> v; /I a vector variable of Tokens (variable)
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Declarations

® Declarations are frequently introduced mto a program through
“headers”

" A header is a file containing declarations providing an interface to other
parts of a program

" This allows for abstraction — you don’t have to know the details
of a function like cout in order to use it. When you add
#include ""std_lib_facilities.h"

to your code, the declarations in the file std_lib_facilities.h
become available (including cout, etc.).
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" At least three errors:

int main()
d

cout << f(i) << "\n’;
§

" Add declarations:

#include ""std_lib_facilities.h” // we find the declaration of cout in here

int main()

d

cout << f(i) << "\n’;
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" Define your own functions and variables:

#include ""std_lib_facilities.h”” // we find the declaration of cout in
here

int f(intx ) {/* ... */} // declaration of f

int main()

{

inti=7; // declaration of 1

cout << f(i) << "\n’;
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Definitions

A declaration that (also) fully specifies the entity declared is
called a definition

" Examples
inta=7;
intb; // an (uninitialized) int
vector<double> v; /I an empty vector of doubles

double sqrt(double) { ... }; // a function with a body
struct Point { int x; int y; };

" Examples of declarations that are not definitions

double sqrt(double); /I function body missing
struct Point; I class members specified elsewhere
extern int a; Il extern means “not definition”

Il “extern” is archaic, we will hardly use it
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Declarations and definitions

" You can’t define something twice
" A definition says what something is

" Examples
int a;  // definition
int a; // error: double definition
double sqrt(double d) { ... } /I definition
double sqrt(double d) { ... } /[ error. double definition

" You can declare something twice

" A declaration says how something can be used
inta=7; /I definition (also a declaration)
extern int a; /[ declaration
double sqrt(double); /[ declaration
double sqrt(double d) { ... } /I definition (also a declaration)
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Why both declarations and ...

definitions?

To refer to something, we need (only) its declaration

Often we want the definition “elsewhere”
" [aterin a file
5 [n another file
" preferably written by someone else
Declarations are used to specify interfaces
" To your own code

® To libraries

" Libraries are key: we can’t write all ourselves, and wouldn’t want to

In larger programs

" Place all declarations in header files to ease sharing
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Kinds of declarations ~ ——

" The most interesting are
" Variables
" int x;
" vector<int>vi2 {1,2,3.,4};
" Constants
" void f(const X&);
" constexpr int = isqrt(2);
" Functions (see §8.5)
" double sqrt(double d) {/* ... */}
" Namespaces (see §8.7)
" Types (classes and enumerations; see Chapter 9)

" Templates (see Chapter 19)
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Header Files and the Preprocessor™

" A header 1s a file that holds declarations of functions, types,
constants, and other program components.

" The construct
#include "std_lib_facilities.h"
1S a “preprocessor directive” that adds declarations to your
program
" Typically, the header file is simply a text (source code) file

" A header gives you access to functions, types, etc. that you
want to use 1n your programs.
" Usually, you don’t really care about how they are written.

" The actual functions, types, etc. are defined in other source code files
" Often as part of libraries
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token.cpp:

Source files
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// declarations:

class Token { ... };

class Token_stream {
Token get();

}5

extern Token_stream ts;

#include "token.h"
//definitions:

{1 ... %}
Token_stream ts;

Token Token_stream::get()

use.cpp:

#include "token.h"

Token t = ts.get();

A header file (here, token.h) defines an interface between user code

and implementation code (usually in a library)

The same #include declarations in both .cpp files (definitions and

uses) ease consistencsxrgkget:rclg
ustru

n
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" A scope 1s a region of program text
" Global scope (outside any language construct)
" (lass scope (within a class)
" Local scope (between { ... } braces)
" Statement scope (e.g. in a for-statement)

" A name in a scope can be seen from within its scope and within
scopes nested within that scope
" Only after the declaration of the name (“‘can’t look ahead™ rule)
" (Class members can be used within the class before they are declared
= A scope keeps “things” local
" Prevents my variables, functions, etc., from interfering with yours
" Remember: real programs have many thousands of entities
" Locality is good!
" Keep names as local as possible
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Scope

#include "std_lib_facilities.h"  // get max and abs from here
/[ no r, i, or v here
class My vector {

vector<int> v; /l'v is in class scope
public:

int largest() // largest is in class scope

d

intr=0; /[ v is local

for (int i = 0; i<v.size(); ++i) //iis in statement scope
r = max(r,abs(v[i]));
/] no i here
return r;
§
/I no r here
§5
/I nov here
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Scopes nest

int x; // global variable — avoid those where you can
inty; // another global variable

int ()

d
int x;// local variable (Note — now there are two x’s)
Xx=17; /[ local x, not the global x
d

int x =ys; /[ another local x, initialized by the global y
/I (Now there are three x’s)
++x3 /] increment the local x in this scope

;
y

Il avoid such complicated nesting and hiding: keep it simple!
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Recap: Why functions? -

® Chop a program 1nto manageable pieces

" “divide and conquer”

B Match our understanding of the problem domain
" Name logical operations

" A function should do one thing well
® Functions make the program easier to read
" A function can be useful in many places in a program
B Ease testing, distribution of labor, and maintenance

" Keep functions small
" Easier to understand, specify, and debug
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General form:
" return_type name (formal arguments); /[ a declaration
" return_type name (formal arguments) body /I a definition

" For example
double f(int a, double d) { return a*d; }

Formal arguments are often called parameters

If you don’t want to return a value give void as the return type
void increase power(int level);
® Here, void means “doesn’t return a value”

A body 1s a block or a try block
" For example
{ /* code */ '} /I a block
try { /* code */ } catch(exception& e) { /* code */} /I a try block

Functions represent/implement computations/calculations
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Functions: Call by Value  ——

/I call-by-value (send the function a copy of the argument’s value)
int f(int a) { a = a+1; return a; }

a: 0

copy the value
int main()

{ x: L0
int xx = 0;
cout << f(xx) << "\n'; // writes 1
cout << xx <<\n'; /[ writes 0; f() doesn’t change xx

int yy = 7; A 7
cout << f(yy) << '\n'; // writes 8; f() doesn’t change yy
cout <<yy<<\n'; [/ writes 7 copythe value
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Functions; Call. by Reference w—

/I call-by-reference (pass a reference to the argument)
int f(int& a) { a = a+1; return a; }
a.

Be abitiy st call (refer to xx)

{

0

int xx = 0;

cout << f(xx) << "\n'; // writes 1
Il f() changed the value of xx
cout <<xx<<\n'; /[ writes 1
int yy =7;

cout << f(yy) << "\n'; // writes 8
Il f() changes the value of yy
cout <<yy <<\n'; [/ writes 8 yy- 7

2™ call (refer to yy)
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Functions

" Avoid (non-const) reference arguments when you can

" They can lead to obscure bugs when you forget which
arguments can be changed
int incrl(int a) { return a+1; }
void incr2(int& a) { ++a; }
intx="7;
x = incr1(x);// pretty obvious
incr2(x);  // pretty obscure

" So why have reference arguments?

® (Occasionally, they are essential
" F.g., for changing several values
® For manipulating containers (e.g., vector)

" const reference arguments are very often useful
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Call by value/by reference/
by const-reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++er; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()
d
int x = 0;
inty = 0;
intz=0;
o(X,y,Z); I os==0y==1z==
g(1,2,3); I error. reference argument r needs a variable to refer to
g(1,y.,3); /] ok: since cr is const we can pass “‘a temporary’

§

/] const references are very useful for passing large objects
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References

" “reference” 1s a general concept

® Not just for call-by-reference r

inti="7;

int& r =1; 7
r=9; /[ i becomes 9

const int& cr =1;
/[ exr =17; /[ error. cr refers to const
i=8;

cout << cr << endl; // write out the value of i (that’s 8)

" You can
" think of a reference as an alternative name for an object

" You can’t
" modify an object through a const reference

" make a reference refer to another object after initialization
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" A range-for loop:
" for (string s : v) cout <<s << '"\n’’; //'s 1s a copy of some v[i]
" for (string& s : v) cout <<s << "\n"’; /[ no copy

" for (const string& s : v) cout <<s << "\n”’; // and we don’t modify v

Stroustrup/Programming 26



” \
o R

" You can define functions that can be evaluated at compile time:
constexpr functions

constexpr double xscale = 10;// scaling factors
constexpr double yscale = .8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };
constexpr Point x = scale({123,456}); // evaluated at compile time

void use(Point p)

d

constexpr Point x1 = scale(p); Il error: compile-time evaluation
/] requested for variable argument

Point x2 = scale(p); // OK: run-time evaluation

}
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Guidance for Passing Variables—

Use call-by-value for very small objects
Use call-by-const-reference for large objects
Use call-by-reference only when you have to

Return a result rather than modify an object through a reference
argument

For example
class Image { /* objects are potentially huge */ };
void f(Image i); ... f(my_image); // oops: this could be s-I-0-0-0-w
void f(Image& i); ... f(my_image); // no copy, but f() can modify my_image
void f(const Image&); ... f(my_image); // f() won 't mess with my image
Image make image(); /[ most likely fast! (“move semantics”’ — later)
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Namespaces

" Consider this code from two programmers Jack and Jill

class Glob { /*...*/ }; Il in Jack’s header file jack.h
class Widget { /*...*/ }; /Il also in jack.h

class Blob { /*...*/ }; [['in Jill’s header file jill.h
class Widget { /*...%/ }; /[ also in jill.h

#include "jack.h''; /[ this is in your code
#include "jilLh'"'; Il so is this

void my_ func(Widget p) // oops!— error: multiple definitions of Widget

d
N

§
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Namespaces

® The compiler will not compile multiple definitions; such clashes can occur from multiple headers.

® One way to prevent this problem is with namespaces:

namespace Jack { // in Jack’s header file
class Glob{ /*...*/ };
class Widget{ /*...*/ };

#include "jack.h'"; /] this is in your code
#include "jill.h'"'; // so is this

void my_func(Jack::Widget p) /I OK, Jack’s Widget class will not
{ /I clash with a different Widget

.

}
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Namespaces

" A namespace 1S a named scope

" The :: syntax 1s used to specify which namespace you are using
and which (of many possible) objects of the same name you are
referring to

" For example, cout 1s in namespace std, you could write:

std::cout << ""Please enter stuff... \n"';

Stroustrup/Programming 31



VR
using Declarations and Directives

" To avoid the tedium of
" std::cout << '"Please enter stuff... \n"’;

you could write a “using declaration™

" using std::cout; // when [ say cout, [ mean std::cout
" cout << '"Please enter stuff... \n"'; // ok: std::cout
" cin >>x; /[ error. cin not in scope

" or you could write a “using directive”

" using namespace std; // “make all names from namespace std
available”

B cout << "Please enter stuff... \n'"'; // ok: std::cout
" cin >> x; /[ ok: std::cin

" More about header files in chapter 12
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" More technicalities, mostly related to classes
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