Chapter 8
Technicalities: Functions, etc.

Bjarne Stroustrup

www.stroustrup.com/Programming

Ab StraCt Smarter computing.

" This lecture and the following present some technical
details of the language to give a slightly broader view
of C++’s basic facilities and to provide a more
systematic view of those facilities. This also acts as a
review of many of the notions presented so far, such
as types, functions, and initialization, and provides an
opportunity to explore our tool without adding new
programming techniques or concepts.

Stroustrup/Programming)

Overview

Language Technicalities

Declarations
" Definitions
" Headers and the preprocessor
" Scope
Functions
" Declarations and definitions
" Arguments
" (Call by value, reference, and const reference

Namespaces
" “Using” declarations

Stroustrup/Programming

VR

Smarter computing.

VR

Smarter computing.

[Language technicalities

" Are anecessary evil
" A programming language is a foreign language

" When learning a foreign language, you have to look at the grammar and
vocabulary

" We will do this 1n this chapter and the next

" Because;:

" Programs must be precisely and completely specified
" A computer is a very stupid (though very fast) machine
" A computer can’t guess what you “really meant to say’ (and shouldn’t try to)
" So we must know the rules
® Some of them (the C++11 standard is 1,310 pages)
" However, never forget that
" What we study is programming
" Qur output 1s programs/systems
" A programming language is only a tool

Stroustrup/Programming 4

7 \
TeChnlc alltle S Smarter computing.

" Don’t spend your time on minor syntax and semantic 1ssues.
There 1s more than one way to say everything
" Just like in English

" Most design and programming concepts are universal, or at
least very widely supported by popular programming languages
" So what you learn using C++ you can use with many other languages

" [Language technicalities are specific to a given language

" But many of the technicalities from C++ presented here have obvious
counterparts in C, Java, C#, etc.

Stroustrup/Programming)

VR

Smarter computing.

Declarations

A declaration introduces a name into a scope.

A declaration also specifies a type for the named object.
Sometimes a declaration includes an initializer.

A name must be declared before it can be used in a C++ program.

Examples:
" inta=7; /[an int variable named ‘a’ is declared
" const double cd = 8.7; /I a double-precision floating-point constant
" double sqrt(double); /I a function taking a double argument and
/[returning a double result
" vector<Token> v; /I a vector variable of Tokens (variable)

Stroustrup/Programming 6

VR

Smarter computing.

Declarations

® Declarations are frequently introduced mto a program through
“headers”

" A header is a file containing declarations providing an interface to other
parts of a program

" This allows for abstraction — you don’t have to know the details
of a function like cout in order to use it. When you add
#include ""std_lib_facilities.h"

to your code, the declarations in the file std_lib_facilities.h
become available (including cout, etc.).

Stroustrup/Programming 7

7 \
F Or eX amp 1 e Smarter computing.

" At least three errors:

int main()
d

cout << f(i) << "\n’;
§

" Add declarations:

#include ""std_lib_facilities.h” // we find the declaration of cout in here

int main()

d

cout << f(i) << "\n’;

Stroustrup/Programming 8

7 \
F Or eX amp 1 e Smarter computing.

" Define your own functions and variables:

#include ""std_lib_facilities.h”” // we find the declaration of cout in
here

int f(intx) {/* ... */} // declaration of f

int main()

{

inti=7; // declaration of 1

cout << f(i) << "\n’;

Stroustrup/Programming 9

VR

Smarter computing.

Definitions

A declaration that (also) fully specifies the entity declared is
called a definition

" Examples
inta=7;
intb; // an (uninitialized) int
vector<double> v; /I an empty vector of doubles

double sqrt(double) { ... }; // a function with a body
struct Point { int x; int y; };

" Examples of declarations that are not definitions

double sqrt(double); /I function body missing
struct Point; I class members specified elsewhere
extern int a; Il extern means “not definition”

Il “extern” is archaic, we will hardly use it

Stroustrup/Programming 10

VR

Smarter computing.

Declarations and definitions

" You can’t define something twice
" A definition says what something is

" Examples
int a; // definition
int a; // error: double definition
double sqrt(double d) { ... } /I definition
double sqrt(double d) { ... } /[error. double definition

" You can declare something twice

" A declaration says how something can be used
inta=7; /I definition (also a declaration)
extern int a; /[declaration
double sqrt(double); /[declaration
double sqrt(double d) { ... } /I definition (also a declaration)

Stroustrup/Programming 11

. 7\
Why both declarations and ...

definitions?

To refer to something, we need (only) its declaration

Often we want the definition “elsewhere”
" [aterin a file
5 [n another file
" preferably written by someone else
Declarations are used to specify interfaces
" To your own code

® To libraries

" Libraries are key: we can’t write all ourselves, and wouldn’t want to

In larger programs

" Place all declarations in header files to ease sharing

Stroustrup/Programming 12

” \
Kinds of declarations ~ ——

" The most interesting are
" Variables
" int x;
" vector<int>vi2 {1,2,3.,4};
" Constants
" void f(const X&);
" constexpr int = isqrt(2);
" Functions (see §8.5)
" double sqrt(double d) {/* ... */}
" Namespaces (see §8.7)
" Types (classes and enumerations; see Chapter 9)

" Templates (see Chapter 19)

Stroustrup/Programming 13

” \
Header Files and the Preprocessor™

" A header 1s a file that holds declarations of functions, types,
constants, and other program components.

" The construct
#include "std_lib_facilities.h"
1S a “preprocessor directive” that adds declarations to your
program
" Typically, the header file is simply a text (source code) file

" A header gives you access to functions, types, etc. that you
want to use 1n your programs.
" Usually, you don’t really care about how they are written.

" The actual functions, types, etc. are defined in other source code files
" Often as part of libraries

Stroustrup/Programming 14

token.h:

token.cpp:

Source files

VR

Smarter computing.

// declarations:

class Token { ... };

class Token_stream {
Token get();

}5

extern Token_stream ts;

#include "token.h"
//definitions:

{1 ... %}
Token_stream ts;

Token Token_stream::get()

use.cpp:

#include "token.h"

Token t = ts.get();

A header file (here, token.h) defines an interface between user code

and implementation code (usually in a library)

The same #include declarations in both .cpp files (definitions and

uses) ease consistencsxrgkget:rclg
ustru

n
/Pr%gramming

15

7 \
S C Op e Smarter computing.

" A scope 1s a region of program text
" Global scope (outside any language construct)
" (lass scope (within a class)
" Local scope (between { ... } braces)
" Statement scope (e.g. in a for-statement)

" A name in a scope can be seen from within its scope and within
scopes nested within that scope
" Only after the declaration of the name (“‘can’t look ahead™ rule)
" (Class members can be used within the class before they are declared
= A scope keeps “things” local
" Prevents my variables, functions, etc., from interfering with yours
" Remember: real programs have many thousands of entities
" Locality is good!
" Keep names as local as possible

Stroustrup/Programming 16

VR

Smarter computing.

Scope

#include "std_lib_facilities.h" // get max and abs from here
/[no r, i, or v here
class My vector {

vector<int> v; /l'v is in class scope
public:

int largest() // largest is in class scope

d

intr=0; /[v is local

for (int i = 0; i<v.size(); ++i) //iis in statement scope
r = max(r,abs(v[i]));
/] no i here
return r;
§
/I no r here
§5
/I nov here

Stroustrup/Programming 17

” \
Scopes nest

int x; // global variable — avoid those where you can
inty; // another global variable

int ()

d
int x;// local variable (Note — now there are two x’s)
Xx=17; /[local x, not the global x
d

int x =ys; /[another local x, initialized by the global y
/I (Now there are three x’s)
++x3 /] increment the local x in this scope

;
y

Il avoid such complicated nesting and hiding: keep it simple!

Stroustrup/Programming 18

” \
Recap: Why functions? -

® Chop a program 1nto manageable pieces

" “divide and conquer”

B Match our understanding of the problem domain
" Name logical operations

" A function should do one thing well
® Functions make the program easier to read
" A function can be useful in many places in a program
B Ease testing, distribution of labor, and maintenance

" Keep functions small
" Easier to understand, specify, and debug

Stroustrup/Programming 19

VR

Functl O n S Smarter computing.
General form:
" return_type name (formal arguments); /[a declaration
" return_type name (formal arguments) body /I a definition

" For example
double f(int a, double d) { return a*d; }

Formal arguments are often called parameters

If you don’t want to return a value give void as the return type
void increase power(int level);
® Here, void means “doesn’t return a value”

A body 1s a block or a try block
" For example
{ /* code */ '} /I a block
try { /* code */ } catch(exception& e) { /* code */} /I a try block

Functions represent/implement computations/calculations

Stroustrup/Programming 20

. ” \
Functions: Call by Value ——

/I call-by-value (send the function a copy of the argument’s value)
int f(int a) { a = a+1; return a; }

a: 0

copy the value
int main()

{ x: L0
int xx = 0;
cout << f(xx) << "\n'; // writes 1
cout << xx <<\n'; /[writes 0; f() doesn’t change xx

int yy = 7; A 7
cout << f(yy) << '\n'; // writes 8; f() doesn’t change yy
cout <<yy<<\n'; [/ writes 7 copythe value

Stroustrup/Programming 21

” \
Functions; Call. by Reference w—

/I call-by-reference (pass a reference to the argument)
int f(int& a) { a = a+1; return a; }
a.

Be abitiy st call (refer to xx)

{

0

int xx = 0;

cout << f(xx) << "\n'; // writes 1
Il f() changed the value of xx
cout <<xx<<\n'; /[writes 1
int yy =7;

cout << f(yy) << "\n'; // writes 8
Il f() changes the value of yy
cout <<yy <<\n'; [/ writes 8 yy- 7

2™ call (refer to yy)

Stroustrup/Programming 22

” \
Functions

" Avoid (non-const) reference arguments when you can

" They can lead to obscure bugs when you forget which
arguments can be changed
int incrl(int a) { return a+1; }
void incr2(int& a) { ++a; }
intx="7;
x = incr1(x);// pretty obvious
incr2(x); // pretty obscure

" So why have reference arguments?

® (Occasionally, they are essential
" F.g., for changing several values
® For manipulating containers (e.g., vector)

" const reference arguments are very often useful

Stroustrup/Programming 23

VR

Smarter computing.

Call by value/by reference/
by const-reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++er; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()
d
int x = 0;
inty = 0;
intz=0;
o(X,y,Z); I os==0y==1z==
g(1,2,3); I error. reference argument r needs a variable to refer to
g(1,y.,3); /] ok: since cr is const we can pass “‘a temporary’

§

/] const references are very useful for passing large objects

Stroustrup/Programming 24

VR
References

" “reference” 1s a general concept

® Not just for call-by-reference r

inti="7;

int& r =1; 7
r=9; /[i becomes 9

const int& cr =1;
/[exr =17; /[error. cr refers to const
i=8;

cout << cr << endl; // write out the value of i (that’s 8)

" You can
" think of a reference as an alternative name for an object

" You can’t
" modify an object through a const reference

" make a reference refer to another object after initialization
Stroustrup/Programming 25

7 \
F Or eX amp 1 e Smarter computing.

" A range-for loop:
" for (string s : v) cout <<s << '"\n’’; //'s 1s a copy of some v[i]
" for (string& s : v) cout <<s << "\n"’; /[no copy

" for (const string& s : v) cout <<s << "\n”’; // and we don’t modify v

Stroustrup/Programming 26

” \
o R

" You can define functions that can be evaluated at compile time:
constexpr functions

constexpr double xscale = 10;// scaling factors
constexpr double yscale = .8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };
constexpr Point x = scale({123,456}); // evaluated at compile time

void use(Point p)

d

constexpr Point x1 = scale(p); Il error: compile-time evaluation
/] requested for variable argument

Point x2 = scale(p); // OK: run-time evaluation

}

Stroustrup/Programming 27

7 \
Guidance for Passing Variables—

Use call-by-value for very small objects
Use call-by-const-reference for large objects
Use call-by-reference only when you have to

Return a result rather than modify an object through a reference
argument

For example
class Image { /* objects are potentially huge */ };
void f(Image i); ... f(my_image); // oops: this could be s-I-0-0-0-w
void f(Image& i); ... f(my_image); // no copy, but f() can modify my_image
void f(const Image&); ... f(my_image); // f() won 't mess with my image
Image make image(); /[most likely fast! (“move semantics”’ — later)

Stroustrup/Programming 28

7 \
Namespaces

" Consider this code from two programmers Jack and Jill

class Glob { /*...*/ }; Il in Jack’s header file jack.h
class Widget { /*...*/ }; /Il also in jack.h

class Blob { /*...*/ }; [['in Jill’s header file jill.h
class Widget { /*...%/ }; /[also in jill.h

#include "jack.h''; /[this is in your code
#include "jilLh'"'; Il so is this

void my_ func(Widget p) // oops!— error: multiple definitions of Widget

d
N

§

Stroustrup/Programming AY)

7 \
Namespaces

® The compiler will not compile multiple definitions; such clashes can occur from multiple headers.

® One way to prevent this problem is with namespaces:

namespace Jack { // in Jack’s header file
class Glob{ /*...*/ };
class Widget{ /*...*/ };

#include "jack.h'"; /] this is in your code
#include "jill.h'"'; // so is this

void my_func(Jack::Widget p) /I OK, Jack’s Widget class will not
{ /I clash with a different Widget

.

}

Stroustrup/Programming 30

7 \
Namespaces

" A namespace 1S a named scope

" The :: syntax 1s used to specify which namespace you are using
and which (of many possible) objects of the same name you are
referring to

" For example, cout 1s in namespace std, you could write:

std::cout << ""Please enter stuff... \n"';

Stroustrup/Programming 31

VR
using Declarations and Directives

" To avoid the tedium of
" std::cout << '"Please enter stuff... \n"’;

you could write a “using declaration™

" using std::cout; // when [say cout, [mean std::cout
" cout << '"Please enter stuff... \n"'; // ok: std::cout
" cin >>x; /[error. cin not in scope

" or you could write a “using directive”

" using namespace std; // “make all names from namespace std
available”

B cout << "Please enter stuff... \n'"'; // ok: std::cout
" cin >> x; /[ok: std::cin

" More about header files in chapter 12

Stroustrup/Programming 32

NeXt talk Smarter computing.

" More technicalities, mostly related to classes

Stroustrup/Programming 33

