
Chapter 8Chapter 8
Technicalities: Functions, etc.Technicalities: Functions, etc.

Bjarne Stroustrup

www.stroustrup.com/Programming

AbstractAbstract

 This lecture and the following present some technical This lecture and the following present some technical
details of the language to give a slightly broader view details of the language to give a slightly broader view
of C++’s basic facilities and to provide a more of C++’s basic facilities and to provide a more
systematic view of those facilities. This also acts as a systematic view of those facilities. This also acts as a
review of many of the notions presented so far, such review of many of the notions presented so far, such
as types, functions, and initialization, and provides an as types, functions, and initialization, and provides an
opportunity to explore our tool without adding new opportunity to explore our tool without adding new
programming techniques or concepts.programming techniques or concepts.

22Stroustrup/ProgrammingStroustrup/Programming

OverviewOverview
 Language TechnicalitiesLanguage Technicalities
 DeclarationsDeclarations

 DefinitionsDefinitions
 Headers and the preprocessorHeaders and the preprocessor
 ScopeScope

 FunctionsFunctions
 Declarations and definitionsDeclarations and definitions
 ArgumentsArguments
 Call by value, reference, and Call by value, reference, and constconst reference reference

 NamespacesNamespaces
 ““Using” declarationsUsing” declarations

33Stroustrup/ProgrammingStroustrup/Programming

Language technicalitiesLanguage technicalities

 Are a necessary evilAre a necessary evil
 A programming language is a foreign languageA programming language is a foreign language
 When learning a foreign language, you have to look at the grammar and When learning a foreign language, you have to look at the grammar and

vocabularyvocabulary
 We will do this in this chapter and the next We will do this in this chapter and the next

 Because:Because:
 Programs must be precisely and completely specifiedPrograms must be precisely and completely specified

 A computer is a very stupid (though very fast) machineA computer is a very stupid (though very fast) machine
 A computer canA computer can’’t guess what you t guess what you ““really meant to sayreally meant to say”” (and shouldn’t try to) (and shouldn’t try to)

 So we must know the rulesSo we must know the rules
 Some of them (the C++11 standard is 1,310 pages)Some of them (the C++11 standard is 1,310 pages)

 However, never forget thatHowever, never forget that
 What we study is programmingWhat we study is programming
 Our output is programs/systemsOur output is programs/systems
 A programming language is only a toolA programming language is only a tool

44Stroustrup/ProgrammingStroustrup/Programming

TechnicalitiesTechnicalities

 Don’t spend your time on minor syntax and semantic issues. Don’t spend your time on minor syntax and semantic issues.
There is more than one way to say everythingThere is more than one way to say everything
 Just like in EnglishJust like in English

 Most design and programming concepts are universal, or at Most design and programming concepts are universal, or at
least very widely supported by popular programming languagesleast very widely supported by popular programming languages
 So what you learn using C++ you can use with many other languagesSo what you learn using C++ you can use with many other languages

 Language technicalities are specific to a given languageLanguage technicalities are specific to a given language
 But many of the technicalities from C++ presented here have obvious But many of the technicalities from C++ presented here have obvious

counterparts in C, Java, C#, etc.counterparts in C, Java, C#, etc.

55Stroustrup/ProgrammingStroustrup/Programming

DeclarationsDeclarations

 A declaration introduces a name into a scope.A declaration introduces a name into a scope.
 A declaration also specifies a type for the named object.A declaration also specifies a type for the named object.
 Sometimes a declaration includes an initializer.Sometimes a declaration includes an initializer.
 A name must be declared before it can be used in a C++ program.A name must be declared before it can be used in a C++ program.
 Examples:Examples:

 int a = 7;int a = 7; // // an int variable named an int variable named ‘a’ is declared‘a’ is declared
 const double cd = 8.7;const double cd = 8.7; // // a double-precision floating-point constanta double-precision floating-point constant
 double sqrt(double);double sqrt(double); // // a function taking a double argument and a function taking a double argument and

//// returning a double resultreturning a double result
 vector<Token> v;vector<Token> v; // // a vector variable of a vector variable of TokenTokens (variable)s (variable)

66Stroustrup/ProgrammingStroustrup/Programming

DeclarationsDeclarations

 Declarations are frequently introduced into a program through Declarations are frequently introduced into a program through
“headers”“headers”
 A header is a file containing declarations providing an interface to other A header is a file containing declarations providing an interface to other

parts of a programparts of a program

 This allows for abstraction – you donThis allows for abstraction – you don’’t have to know the details t have to know the details
of a function like of a function like coutcout in order to use it. When you add in order to use it. When you add

#include "std_lib_facilities.h"#include "std_lib_facilities.h"

 to your code, the declarations in the file to your code, the declarations in the file std_lib_facilities.hstd_lib_facilities.h

become available (including become available (including coutcout,, etc.).etc.).

77Stroustrup/ProgrammingStroustrup/Programming

For exampleFor example

 At least three errors:At least three errors:
int main()

{

 cout << f(i) << ′\n′;

}

 Add declarations:Add declarations:
#include ″std_lib_facilities.h″ // we find the declaration of cout in here

int main()

{

 cout << f(i) << ′\n′;

}

Stroustrup/ProgrammingStroustrup/Programming 88

For exampleFor example

 Define your own functions and variables:Define your own functions and variables:

#include ″std_lib_facilities.h″ // we find the declaration of cout in
here

int f(int x) { /* … */ } // declaration of f

int main()

{

 int i = 7; // declaration of i

 cout << f(i) << ′\n′;

}

Stroustrup/ProgrammingStroustrup/Programming 99

DefinitionsDefinitions

 A declaration that (also) fully specifies the entity declared is A declaration that (also) fully specifies the entity declared is
called a definitioncalled a definition
 ExamplesExamples

int a = 7;int a = 7;
int b;int b; // // an (uninitialized) int an (uninitialized) int
vector<double> v;vector<double> v; // // an empty vector of doublesan empty vector of doubles
double sqrt(double) { … }; // double sqrt(double) { … }; // a function with a bodya function with a body
struct Point { int x; int y; };struct Point { int x; int y; };

 Examples of declarations that are not definitionsExamples of declarations that are not definitions
double sqrt(double);double sqrt(double); // // function body missingfunction body missing

struct Point;struct Point; //// class members specified elsewhereclass members specified elsewhere
extern int a;extern int a; //// externextern means means “not definition”“not definition”
//// “extern” is archaic; we will hardly use it“extern” is archaic; we will hardly use it

1010Stroustrup/ProgrammingStroustrup/Programming

Declarations and definitionsDeclarations and definitions
 You can’t You can’t definedefine something twice something twice

 A definition says what something isA definition says what something is
 ExamplesExamples

int a;int a; // // definitiondefinition
int a;int a; // // error: double definitionerror: double definition
double sqrt(double d) { … }double sqrt(double d) { … } // // definitiondefinition
double sqrt(double d) { … }double sqrt(double d) { … } // // error: double definitionerror: double definition

 You can You can declaredeclare something twice something twice
 A declaration says how something can be usedA declaration says how something can be used

int a = 7;int a = 7; // // definition (also a declaration)definition (also a declaration)
extern int a;extern int a; // // declarationdeclaration
double sqrt(double);double sqrt(double); // // declarationdeclaration
double sqrt(double d) { … }double sqrt(double d) { … } // // definition (also a declaration)definition (also a declaration)

1111Stroustrup/ProgrammingStroustrup/Programming

Why both declarations and Why both declarations and
definitions?definitions?

 To refer to something, we need (only) its declarationTo refer to something, we need (only) its declaration
 Often we want the definition “elsewhere”Often we want the definition “elsewhere”

 Later in a fileLater in a file
 In another fileIn another file

 preferably written by someone elsepreferably written by someone else

 Declarations are used to specify interfacesDeclarations are used to specify interfaces
 To your own codeTo your own code
 To librariesTo libraries

 Libraries are key: we canLibraries are key: we can’t write all ourselves, and wouldn’t want to’t write all ourselves, and wouldn’t want to

 In larger programsIn larger programs
 Place all declarations in header files to ease sharingPlace all declarations in header files to ease sharing

1212Stroustrup/ProgrammingStroustrup/Programming

Kinds of declarations

 The most interesting are
 Variables

 int x;
 vector<int> vi2 {1,2,3,4};

 Constants
 void f(const X&);
 constexpr int = isqrt(2);

 Functions (see §8.5)
 double sqrt(double d) { /* … */ }

 Namespaces (see §8.7)
 Types (classes and enumerations; see Chapter 9)
 Templates (see Chapter 19)

Stroustrup/ProgrammingStroustrup/Programming 1313

Header Files and the PreprocessorHeader Files and the Preprocessor
 A header is a file that holds declarations of functions, types, A header is a file that holds declarations of functions, types,

constants, and other program components. constants, and other program components.
 The constructThe construct

#include#include "std_lib_facilities.h""std_lib_facilities.h"

 is a is a ““preprocessor directivepreprocessor directive”” that adds that adds declarations to your declarations to your
programprogram
 Typically, the header file is simply a text (source code) fileTypically, the header file is simply a text (source code) file

 A header gives you access to functions, types, etc. that you A header gives you access to functions, types, etc. that you
want to use in your programs.want to use in your programs.
 Usually, you donUsually, you don’t really care about how they are written.’t really care about how they are written.
 The actual functions, types, etc. are defined in other source code filesThe actual functions, types, etc. are defined in other source code files

 Often as part of librariesOften as part of libraries

1414Stroustrup/ProgrammingStroustrup/Programming

Source filesSource files

 A header file (here, A header file (here, token.htoken.h) defines an interface between user code) defines an interface between user code
and implementation code (usually in a library)and implementation code (usually in a library)

 The same The same #include#include declarations in both declarations in both .cpp.cpp files (definitions and files (definitions and
uses) ease consistency checkinguses) ease consistency checking

1515

// declarations:
class Token { … };
class Token_stream {
 Token get();
 …
};
extern Token_stream ts;
…

#include "token.h"
//definitions:
Token Token_stream::get()
{ /* … */ }
Token_stream ts;
…

#include "token.h"
…
Token t = ts.get();
…

token.h:

token.cpp:

use.cpp:

Stroustrup/ProgrammingStroustrup/Programming

ScopeScope
 A scope is a region of program textA scope is a region of program text

 Global scope (outside any language construct)Global scope (outside any language construct)
 Class scope (within a class)Class scope (within a class)
 Local scope (between { … } braces)Local scope (between { … } braces)
 Statement scope (e.g. in a for-statement)Statement scope (e.g. in a for-statement)

 A name in a scope can be seen from within its scope and within A name in a scope can be seen from within its scope and within
scopes nested within that scopescopes nested within that scope
 Only after the declaration of the name (Only after the declaration of the name (“can’t look ahead” rule)“can’t look ahead” rule)
 Class members can be used within the class before they are declaredClass members can be used within the class before they are declared

 A scope keeps “things” localA scope keeps “things” local
 Prevents my variables, functions, etc., from interfering with yoursPrevents my variables, functions, etc., from interfering with yours
 Remember: real programs have Remember: real programs have manymany thousands of entities thousands of entities
 Locality is good!Locality is good!

 Keep names as local as possibleKeep names as local as possible

1616Stroustrup/ProgrammingStroustrup/Programming

ScopeScope
#include "std_lib_facilities.h"#include "std_lib_facilities.h" // // get get maxmax and and absabs from here from here
// // nono r, i, r, i, oror v v here here
class My_vector {class My_vector {

vector<int> v;vector<int> v; // // v v is in class scopeis in class scope
public:public:

int largest()int largest() // // largest largest is in class scopeis in class scope
{{
int r = 0;int r = 0; // // r r is localis local
for (int i = 0; i<v.size(); ++i)for (int i = 0; i<v.size(); ++i) //// i i is in statement scopeis in statement scope
r = max(r,abs(v[i])); r = max(r,abs(v[i]));
// // no no ii here here
return r;return r;
}}
// // no no r r herehere

};};
// // no no v v herehere

1717Stroustrup/ProgrammingStroustrup/Programming

Scopes nestScopes nest
int x;int x; // // global variable – avoid those where you canglobal variable – avoid those where you can
int y;int y; // // another global variableanother global variable

int f()int f()
{{

int x;int x;// // local variable (Note – now there are two local variable (Note – now there are two xx’s)’s)
x = 7;x = 7; // // local local xx, not the global , not the global xx
{{
int x = y;int x = y; // // another local another local xx, initialized by the global , initialized by the global yy
// // (Now there are three(Now there are three x x’s)’s)
++x;++x; // // increment the localincrement the local x x in this scope in this scope
}}

}}

// // avoid such complicated nesting and hiding: keep it simple!avoid such complicated nesting and hiding: keep it simple!

1818Stroustrup/ProgrammingStroustrup/Programming

Recap: Why functions?Recap: Why functions?

 Chop a program into manageable piecesChop a program into manageable pieces
 ““divide and conquer”divide and conquer”

 Match our understanding of the problem domainMatch our understanding of the problem domain
 Name logical operationsName logical operations
 A function should do one thing wellA function should do one thing well

 Functions make the program easier to readFunctions make the program easier to read
 A function can be useful in many places in a programA function can be useful in many places in a program
 Ease testing, distribution of labor, and maintenanceEase testing, distribution of labor, and maintenance
 Keep functions smallKeep functions small

 Easier to understand, specify, and debugEasier to understand, specify, and debug

Stroustrup/ProgrammingStroustrup/Programming 1919

FunctionsFunctions

 General form:General form:
 return_type return_type namename ((formal argumentsformal arguments);); // // aa declarationdeclaration
 return_type return_type namename ((formal argumentsformal arguments)) bodybody // // aa definitiondefinition
 For exampleFor example

double f(int a, double d) { return a*d; }double f(int a, double d) { return a*d; }
 Formal arguments are often called parametersFormal arguments are often called parameters
 If you donIf you don’’t want to return a value give t want to return a value give voidvoid as the return type as the return type

 void increase_power(int level);void increase_power(int level);
 Here,Here, void void means means “doesn’t return a value”“doesn’t return a value”

 A body is a block or a try blockA body is a block or a try block
 For exampleFor example

{ /* { /* codecode */ } */ } // // a blocka block
try { /* try { /* codecode */ } catch(exception& e) { /* */ } catch(exception& e) { /* codecode */ } */ } // // a try blocka try block

 Functions represent/implement computations/calculationsFunctions represent/implement computations/calculations

2020Stroustrup/ProgrammingStroustrup/Programming

Functions: Call by ValueFunctions: Call by Value

// // call-by-value (send the function a copy of the argument’s value)call-by-value (send the function a copy of the argument’s value)
int f(int a) { a = a+1; return a; }int f(int a) { a = a+1; return a; }

int main()int main()
{{

int xx = 0;int xx = 0;
cout << f(xx) << cout << f(xx) << ′\n′;; // // writes writes 11
cout << xx << cout << xx << ′\n′; ; // // writeswrites 0; f() 0; f() doesn’t changedoesn’t change xx xx
int yy = 7;int yy = 7;
cout << f(yy) << cout << f(yy) << ′\n′; // ; // writeswrites 8; f() 8; f() doesn’t changedoesn’t change yy yy
cout << yy << cout << yy << ′\n′; ; // // writeswrites 7 7

}}

2121

0

a:

xx:

copy the value

0

7

a:

yy:

copy the value

7

Stroustrup/ProgrammingStroustrup/Programming

Functions: Call by ReferenceFunctions: Call by Reference
// // call-by-reference (pass a reference to the argument)call-by-reference (pass a reference to the argument)
int f(int& a) { a = a+1; return a; }int f(int& a) { a = a+1; return a; }

int main()int main()
{{

int xx = 0;int xx = 0;
cout << f(xx) << cout << f(xx) << ′\n′;; // // writes writes 11
// // f() f() changed the value ofchanged the value of xx xx
cout << xx << cout << xx << ′\n′; ; // // writeswrites 1 1
int yy = 7;int yy = 7;
cout << f(yy) << cout << f(yy) << ′\n′; // ; // writeswrites 8 8
// // f() f() changes the value ofchanges the value of yy yy
cout << yy << cout << yy << ′\n′; ; // // writeswrites 8 8

}}

2222

0

7

xx:

yy:

a:

1st call (refer to xx)

2nd call (refer to yy)

Stroustrup/ProgrammingStroustrup/Programming

FunctionsFunctions

 Avoid (non-const) reference arguments when you canAvoid (non-const) reference arguments when you can
 They can lead to obscure bugs when you forget which They can lead to obscure bugs when you forget which

arguments can be changedarguments can be changed
int incr1(int a) { return a+1; }int incr1(int a) { return a+1; }
void incr2(int& a) { ++a; }void incr2(int& a) { ++a; }
int x = 7;int x = 7;
x = incr1(x);x = incr1(x); // // pretty obviouspretty obvious
incr2(x);incr2(x); // // pretty obscurepretty obscure

 So why have reference arguments?So why have reference arguments?
 Occasionally, they are essentialOccasionally, they are essential

 E.g., E.g., for changing several valuesfor changing several values
 For manipulating containers (For manipulating containers (e.g., e.g., vector)vector)

 constconst reference arguments are very often useful reference arguments are very often useful

2323Stroustrup/ProgrammingStroustrup/Programming

Call by value/by reference/Call by value/by reference/
by const-referenceby const-reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } //void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error:error: cr cr is is constconst
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // okok

int main()int main()
{{

int x = 0;int x = 0;
int y = 0;int y = 0;
int z = 0;int z = 0;
g(x,y,z);g(x,y,z); // // x==0; y==1; z==0x==0; y==1; z==0
g(1,2,3);g(1,2,3); // // error: reference argumenterror: reference argument r r needs a variable to refer toneeds a variable to refer to
g(1,y,3);g(1,y,3); // // ok: since ok: since cr cr is is constconst we can pass “a temporary” we can pass “a temporary”

}}
// // const const references are very useful for passing large objectsreferences are very useful for passing large objects

2424Stroustrup/ProgrammingStroustrup/Programming

ReferencesReferences
 ““reference” is a general conceptreference” is a general concept

 Not just for call-by-referenceNot just for call-by-reference

int i = 7;int i = 7;
int& r = i;int& r = i;
r = 9;r = 9; // // i i becomesbecomes 9 9
const int& cr = i;const int& cr = i;
// cr = 7;// cr = 7; // // error:error: cr cr refers torefers to const const
i = 8;i = 8;
cout << cr << endl;cout << cr << endl; // // write out the value of i (thatwrite out the value of i (that’s ’s 88))

 You canYou can
 think of a reference as an alternative name for an objectthink of a reference as an alternative name for an object

 You can’tYou can’t
 modify an object through a modify an object through a constconst reference reference
 make a reference refer to another object after initializationmake a reference refer to another object after initialization

2525

7i:

r

cr

Stroustrup/ProgrammingStroustrup/Programming

For exampleFor example

 A range-for loop:A range-for loop:
 for (string s : v) cout << s << ″\n″;for (string s : v) cout << s << ″\n″; // // s is a copy of some v[i]s is a copy of some v[i]
 for (string& s : v) cout << s << ″\n″;for (string& s : v) cout << s << ″\n″; // // no copyno copy
 for (const string& s : v) cout << s << ″\n″;for (const string& s : v) cout << s << ″\n″; // // and we don’t modify vand we don’t modify v

Stroustrup/ProgrammingStroustrup/Programming 2626

Compile-time functionsCompile-time functions

 You can define functions that can be evaluated at compile time:
constexpr functions
constexpr double xscale = 10;// scaling factors
constexpr double yscale = .8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };

constexpr Point x = scale({123,456}); // evaluated at compile time

void use(Point p)

{

constexpr Point x1 = scale(p); // error: compile-time evaluation
// requested for variable argument

Point x2 = scale(p); // OK: run-time evaluation

}

Stroustrup/ProgrammingStroustrup/Programming 2727

Guidance for Passing VariablesGuidance for Passing Variables

 Use call-by-value for very small objectsUse call-by-value for very small objects
 Use call-by-const-reference for large objectsUse call-by-const-reference for large objects
 Use call-by-reference only when you have toUse call-by-reference only when you have to
 Return a result rather than modify an object through a reference Return a result rather than modify an object through a reference

argumentargument

 For exampleFor example
class Image { /* class Image { /* objects are potentially hugeobjects are potentially huge */ };*/ };
void f(Image i); … f(my_image); // void f(Image i); … f(my_image); // oops: this could be s-l-o-o-o-woops: this could be s-l-o-o-o-w
void f(Image& i); … f(my_image); // void f(Image& i); … f(my_image); // no copy, but no copy, but f()f() can modify can modify my_imagemy_image
void f(const Image&); … f(my_image); // void f(const Image&); … f(my_image); // f() f() wonwon’’t mess witht mess with my_image my_image
Image make_image();Image make_image(); // // most likely fast! (“move semantics” – later)most likely fast! (“move semantics” – later)

2828Stroustrup/ProgrammingStroustrup/Programming

NamespacesNamespaces

 Consider this code from two programmers Jack and JillConsider this code from two programmers Jack and Jill

class Glob { /*class Glob { /*……*/ }; */ }; //// in Jackin Jack’s header file’s header file jack.h jack.h
class Widget { /*class Widget { /*……*/ };*/ }; //// also in also in jack.hjack.h

class Blob { /*class Blob { /*……*/ }; */ }; //// in Jillin Jill’s header file’s header file jill.h jill.h
class Widget { /*class Widget { /*……*/ };*/ }; //// also in also in jill.hjill.h

#include "jack.h";#include "jack.h"; //// this is in your codethis is in your code
#include "jill.h";#include "jill.h"; //// so is thisso is this

void my_func(Widget p)void my_func(Widget p) //// oops! – error: multiple definitions of Widgetoops! – error: multiple definitions of Widget
{{

// // ……
}}

2929Stroustrup/ProgrammingStroustrup/Programming

NamespacesNamespaces
 The compiler will not compile multiple definitions; such clashes can occur from multiple headers.The compiler will not compile multiple definitions; such clashes can occur from multiple headers.
 One way to prevent this problem is with namespaces:One way to prevent this problem is with namespaces:

namespace Jack {namespace Jack { //// in Jack in Jack’s header file’s header file
 class Glob{ /*class Glob{ /*……*/ }; */ };

 class Widget{ /*class Widget{ /*……*/ }*/ }; ;
 }}

 #include "jack.h";#include "jack.h"; //// this is in your codethis is in your code
#include "jill.h";#include "jill.h"; //// so is thisso is this

void my_func(Jack::Widget p)void my_func(Jack::Widget p) //// OK, JackOK, Jack’s Widget class will not’s Widget class will not
{{ // // clash with a different Widgetclash with a different Widget
// // ……
}}

3030Stroustrup/ProgrammingStroustrup/Programming

NamespacesNamespaces

 A namespace is a named scopeA namespace is a named scope
 The :: syntax is used to specify which namespace you are using The :: syntax is used to specify which namespace you are using

and which (of many possible) objects of the same name you are and which (of many possible) objects of the same name you are
referring toreferring to

 For example, For example, coutcout is in namespace is in namespace stdstd, you could write:, you could write:

std::cout << "Please enter stuff… \n";std::cout << "Please enter stuff… \n";

3131Stroustrup/ProgrammingStroustrup/Programming

using using Declarations and DirectivesDeclarations and Directives

 To avoid the tedium ofTo avoid the tedium of
 std::cout << "Please enter stuff… \n"; std::cout << "Please enter stuff… \n";

you could write a “using declaration”you could write a “using declaration”
 using std::cout;using std::cout; // // when I saywhen I say coutcout, I mean , I mean std::coutstd::cout
 cout << "Please enter stuff… \n"; cout << "Please enter stuff… \n"; // // ok: std::coutok: std::cout
 cin >> x;cin >> x; // // error: cin not in scopeerror: cin not in scope

 or you could write a “using directive”or you could write a “using directive”
 using namespace std; //using namespace std; // “make all names from namespace “make all names from namespace stdstd

available”available”
 cout << "Please enter stuff… \n"; cout << "Please enter stuff… \n"; // // ok: std::coutok: std::cout
 cin >> x;cin >> x; // // ok: std::cinok: std::cin

 More about header files in chapter 12More about header files in chapter 12
3232Stroustrup/ProgrammingStroustrup/Programming

Next talkNext talk

 More technicalities, mostly related to classesMore technicalities, mostly related to classes

3333Stroustrup/ProgrammingStroustrup/Programming

