
Chapter 5Chapter 5
ErrorsErrors

Bjarne StroustrupBjarne Stroustrup
www.stroustrup.com/Programmingwww.stroustrup.com/Programming

AbstractAbstract

 When we program, we have to deal with When we program, we have to deal with
errors. Our most basic aim is correctness, but errors. Our most basic aim is correctness, but
we must deal with incomplete problem we must deal with incomplete problem
specifications, incomplete programs, and our specifications, incomplete programs, and our
own errors. Here, we’ll concentrate on a key own errors. Here, we’ll concentrate on a key
area: how to deal with unexpected function area: how to deal with unexpected function
arguments. We’ll also discuss techniques for arguments. We’ll also discuss techniques for
finding errors in programs: debugging and finding errors in programs: debugging and
testing.testing.

22Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

OverviewOverview

 Kinds of errorsKinds of errors
 Argument checkingArgument checking

 Error reportingError reporting
 Error detectionError detection
 ExceptionsExceptions

 DebuggingDebugging
 TestingTesting

33Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

ErrorsErrors
 “ … “ … I realized that from now on a large part of my life would be I realized that from now on a large part of my life would be

spent finding and correcting my own mistakes.”spent finding and correcting my own mistakes.”
 Maurice Wilkes, 1949Maurice Wilkes, 1949

 When we write programs, errors are natural and unavoidable; the When we write programs, errors are natural and unavoidable; the
question is, how do we deal with them?question is, how do we deal with them?
 Organize software to minimize errors.Organize software to minimize errors.
 Eliminate most of the errors we made anyway.Eliminate most of the errors we made anyway.

 DebuggingDebugging
 TestingTesting

 Make sure the remaining errors are not serious.Make sure the remaining errors are not serious.
 My guess is that avoiding, finding, and correcting errors is 95% or My guess is that avoiding, finding, and correcting errors is 95% or

more of the effort for serious software development.more of the effort for serious software development.
 You can do much better for small programs. You can do much better for small programs.

 or worse, if you’re sloppyor worse, if you’re sloppy

44Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Your ProgramYour Program

1.1. Should produce the desired results for all legal inputsShould produce the desired results for all legal inputs
2.2. Should give reasonable error messages for illegal inputsShould give reasonable error messages for illegal inputs
3.3. Need not worry about misbehaving hardwareNeed not worry about misbehaving hardware
4.4. Need not worry about misbehaving system softwareNeed not worry about misbehaving system software
5.5. Is allowed to terminate after finding an errorIs allowed to terminate after finding an error

3, 4, and 5 are true for beginner’s code; often, we have to 3, 4, and 5 are true for beginner’s code; often, we have to
worry about those in real software.worry about those in real software.

55Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Sources of errorsSources of errors

 Poor specificationPoor specification
 ““What’s this supposed to do?”What’s this supposed to do?”

 Incomplete programsIncomplete programs
 ““but I’ll not get around to doing that until tomorrow”but I’ll not get around to doing that until tomorrow”

 Unexpected argumentsUnexpected arguments
 ““but but sqrt()sqrt() isn’t supposed to be called with isn’t supposed to be called with -1-1 as its argument” as its argument”

 Unexpected inputUnexpected input
 ““but the user was supposed to input an integer”but the user was supposed to input an integer”

 Code that simply doesn’t do what it was supposed to doCode that simply doesn’t do what it was supposed to do
 ““so fix it!”so fix it!”

66Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Kinds of ErrorsKinds of Errors

 Compile-time errorsCompile-time errors
 Syntax errorsSyntax errors
 Type errorsType errors

 Link-time errorsLink-time errors
 Run-time errorsRun-time errors

 Detected by computer (crash)Detected by computer (crash)
 Detected by library (exceptions)Detected by library (exceptions)
 Detected by user codeDetected by user code

 Logic errorsLogic errors
 Detected by programmer (code runs, but produces incorrect output)Detected by programmer (code runs, but produces incorrect output)

77Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Check your inputsCheck your inputs

 Before trying to use an input value, check that it meets your Before trying to use an input value, check that it meets your
expectations/requirementsexpectations/requirements
 Function argumentsFunction arguments
 Data from input (Data from input (istreamistream))

88Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Bad function argumentsBad function arguments
 The compiler helps:The compiler helps:

 Number and types of arguments must matchNumber and types of arguments must match

int area(int length, int width)int area(int length, int width)
{{

return length*width;return length*width;
}}

int x1 = area(7);int x1 = area(7); // // error: wrong number of argumentserror: wrong number of arguments
int x2 = area("seven", 2);int x2 = area("seven", 2); // // error: 1error: 1stst argument has a wrong type argument has a wrong type
int x3 = area(7, 10);int x3 = area(7, 10); // // okok
int x5 = area(7.5, 10);int x5 = area(7.5, 10); // // ok, but dangerous: 7.5 truncated to 7;ok, but dangerous: 7.5 truncated to 7;

// // most compilers will warn youmost compilers will warn you
int x = area(10, -7); int x = area(10, -7); // // this is a difficult case:this is a difficult case:

 // // the types are correct,the types are correct,
//// but the values make no sensebut the values make no sense

99Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Bad Function ArgumentsBad Function Arguments
 So, how aboutSo, how about int x = area(10, -7);int x = area(10, -7); ??
 AlternativesAlternatives

 Just don’t do thatJust don’t do that
 Rarely a satisfactory answerRarely a satisfactory answer

 The caller should checkThe caller should check
 Hard to do systematicallyHard to do systematically

 The function should checkThe function should check
 Return an “error value” (not general, problematic)Return an “error value” (not general, problematic)
 Set an error status indicator (not general, problematic – don’t do this)Set an error status indicator (not general, problematic – don’t do this)
 Throw an exceptionThrow an exception

 Note: sometimes we can’t change a function that handles errors Note: sometimes we can’t change a function that handles errors
in a way we do not likein a way we do not like
 Someone else wrote it and we can’t or don’t want to change their codeSomeone else wrote it and we can’t or don’t want to change their code

1010Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Bad function argumentsBad function arguments

 Why worry?Why worry?
 You want your programs to be correctYou want your programs to be correct
 Typically the writer of a function has no control over how Typically the writer of a function has no control over how

it is calledit is called
 Writing “do it this way” in the manual (or in comments) is no Writing “do it this way” in the manual (or in comments) is no

solution – many people don’t read manualssolution – many people don’t read manuals
 The beginning of a function is often a good place to checkThe beginning of a function is often a good place to check

 Before the computation gets complicatedBefore the computation gets complicated

 When to worry?When to worry?
 If it doesn’t make sense to test every function, test someIf it doesn’t make sense to test every function, test some

1111Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

How to report an errorHow to report an error
 Return an “error value” (not general, problematic)Return an “error value” (not general, problematic)

int area(int length, int width) // int area(int length, int width) // return a negative value for bad inputreturn a negative value for bad input
{{

if(length <=0 || width <= 0) return -1;if(length <=0 || width <= 0) return -1;
return length*width;return length*width;

}}

 So, “let the caller beware”So, “let the caller beware”
int z = area(x,y);int z = area(x,y);

if (z<0) error("bad area computation");if (z<0) error("bad area computation");
// // ……

 ProblemsProblems
 What if I forget to check that return value?What if I forget to check that return value?
 For some functions there isn’t a “bad value” to return (e.g. max())For some functions there isn’t a “bad value” to return (e.g. max())

1212Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

How to report an errorHow to report an error
 Set an error status indicator (not general, problematic, don’t!)Set an error status indicator (not general, problematic, don’t!)

int errno = 0;int errno = 0; // // used to indicate errorsused to indicate errors
int area(int length, int width)int area(int length, int width)
{{

if (length<=0 || width<=0) errno = 7;if (length<=0 || width<=0) errno = 7; // // || || meansmeans or or
return length*width;return length*width;

}}

 So, “let the caller check”So, “let the caller check”
int z = area(x,y);int z = area(x,y);
if (errno==7) error("bad area computation");if (errno==7) error("bad area computation");
// // ……

 ProblemsProblems
 What if I forget to check What if I forget to check errnoerrno??
 How do I pick a value for How do I pick a value for errnoerrno that’s different from all others? that’s different from all others?
 How do I deal with that error?How do I deal with that error?

1313Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

How to report an errorHow to report an error
 Report an error by throwing an exceptionReport an error by throwing an exception

class Bad_area { }; // class Bad_area { }; // a class is a user defined typea class is a user defined type
 // // Bad_area Bad_area is a type to be used as an exceptionis a type to be used as an exception

int area(int length, int width)int area(int length, int width)
{{

if (length<=0 || width<=0) throw Bad_area();if (length<=0 || width<=0) throw Bad_area(); // // note the ()note the ()
return length*width;return length*width;

}}

 Catch and deal with the error (e.g., in Catch and deal with the error (e.g., in main()main()))
try {try {

int z = area(x,y);int z = area(x,y); // // ifif area() area() doesn’t throw an exceptiondoesn’t throw an exception
}} // // make the assignment and proceedmake the assignment and proceed
catch(Bad_area) {catch(Bad_area) { // // ifif area() area() throws Bad_area(), respondthrows Bad_area(), respond

cerr << "oops! Bad area calculation – fix program\n";cerr << "oops! Bad area calculation – fix program\n";
}}

1414Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

ExceptionsExceptions

 Exception handling is generalException handling is general
 You can’t forget about an exception: the program will You can’t forget about an exception: the program will

terminate if someone doesn’t handle it (using a terminate if someone doesn’t handle it (using a try … try …
catchcatch))

 Just about every kind of error can be reported using Just about every kind of error can be reported using
exceptionsexceptions

 You still have to figure out what to do about an You still have to figure out what to do about an
exception (every exception thrown in your program)exception (every exception thrown in your program)
 Error handling is Error handling is nevernever really simple really simple

1515Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Out of rangeOut of range

 Try thisTry this
vector<int> v(10);vector<int> v(10); // // a vector of 10 a vector of 10 intints,s,

// // each initialized to the default value, each initialized to the default value, 00,,
// // referred to as referred to as v[0]v[0] v[9]v[9]

for (int i = 0; i<v.size(); ++i) v[i] = i; for (int i = 0; i<v.size(); ++i) v[i] = i; // // set valuesset values
for (int i = 0; i<=10; ++i)for (int i = 0; i<=10; ++i) // // print 10 values (???)print 10 values (???)

cout << "v[" << i << "] == " << v[i] << endl;cout << "v[" << i << "] == " << v[i] << endl;

 vector’s vector’s operator[]operator[] (subscript operator) reports a bad (subscript operator) reports a bad
index (its argument) by throwing aindex (its argument) by throwing a Range_errorRange_error if you if you
use use #include "std_lib_facilities.h"#include "std_lib_facilities.h"
 The default behavior can differThe default behavior can differ

1616Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Exceptions – for nowExceptions – for now

 For now, just use exceptions to terminate For now, just use exceptions to terminate
programs gracefully, like thisprograms gracefully, like this

int main()int main()
trytry
{{

 // // ……
}}
catch (out_of_range&) {catch (out_of_range&) { // // out_of_range out_of_range exceptionsexceptions

 cerr << "oops – some vector index out of range\n";cerr << "oops – some vector index out of range\n";
}}
catch (…) {catch (…) { // // all other exceptionsall other exceptions

 cerr << "oops – some exception\n";cerr << "oops – some exception\n";
}}

1717Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

A function A function error()error()
 Here is a simple Here is a simple error()error() function as provided in function as provided in std_lib_facilities.hstd_lib_facilities.h

 This allows you to print an error message by calling This allows you to print an error message by calling error() error()

 It works by disguising throws, like this:It works by disguising throws, like this:
void error(string s) void error(string s) // // one error stringone error string

{{

throw runtime_error(s);throw runtime_error(s);

}}

void error(string s1, string s2) void error(string s1, string s2) // // two error stringstwo error strings

{{

error(s1 + s2); error(s1 + s2); // // concatenatesconcatenates

}}

1818Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Using Using error()error()

 ExampleExample
cout << "please enter integer in range [1..10]\n";cout << "please enter integer in range [1..10]\n";

int x = -1;int x = -1; //// initialize with unacceptable value (if possible)initialize with unacceptable value (if possible)
cin >> x;cin >> x;
if (!cin)if (!cin) //// check that cin read an integercheck that cin read an integer
 error("didn’t get a value");error("didn’t get a value");
if (x < 1 || 10 < x)if (x < 1 || 10 < x) //// check if value is out of rangecheck if value is out of range
 error("x is out of range");error("x is out of range");
//// if we get this far, we can use if we get this far, we can use xx with confidence with confidence

1919Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

How to look for errorsHow to look for errors

 When you have written (drafted?) a program, it’ll When you have written (drafted?) a program, it’ll
have errors (commonly called “bugs”)have errors (commonly called “bugs”)
 It’ll do something, but not what you expectedIt’ll do something, but not what you expected
 How do you find out what it actually does?How do you find out what it actually does?
 How do you correct it?How do you correct it?
 This process is usually called “debugging”This process is usually called “debugging”

2020Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

DebuggingDebugging
 How How notnot to do it to do it

while (while (program doesn’t appear to workprogram doesn’t appear to work) { //) { // pseudo codepseudo code

Randomly look at the program for something that “looks odd”Randomly look at the program for something that “looks odd”

Change it to “look better”Change it to “look better”

}}

 Key questionKey question
How would I know if the program actually worked correctly?How would I know if the program actually worked correctly?

2121Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Program structureProgram structure
 Make the program easy to read so that you have a Make the program easy to read so that you have a

chance of spotting the bugschance of spotting the bugs
 CommentComment

 Explain design ideasExplain design ideas
 Use meaningful namesUse meaningful names
 IndentIndent

 Use a consistent layoutUse a consistent layout
 Your IDE tries to help (but it can’t do everything)Your IDE tries to help (but it can’t do everything)

 You are the one responsibleYou are the one responsible

 Break code into small functionsBreak code into small functions
 Try to avoid functions longer than a pageTry to avoid functions longer than a page

 Avoid complicated code sequencesAvoid complicated code sequences
 Try to avoid nested loops, nested if-statements, etc.Try to avoid nested loops, nested if-statements, etc.

(But, obviously, you sometimes need those)(But, obviously, you sometimes need those)
 Use library facilitiesUse library facilities

2222Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

First get the program to compileFirst get the program to compile
 Is every string literal terminated?Is every string literal terminated?

cout << "Hello, << name << '\n';cout << "Hello, << name << '\n'; // // oops!oops!

 Is every character literal terminated?Is every character literal terminated?
cout << "Hello, " << name << '\n;cout << "Hello, " << name << '\n; // // oops!oops!

 Is every block terminated?Is every block terminated?
if (a>0) { /* if (a>0) { /* do somethingdo something */ */

 else { /* else { /* do something elsedo something else */ } // */ } // oops!oops!

 Is every set of parentheses matched?Is every set of parentheses matched?
if (aif (a // // oopsoops!!

 x = f(y);x = f(y);

 The compiler generally reports this kind of error “late”The compiler generally reports this kind of error “late”
 It doesn’t know you didn’t mean to close “it” laterIt doesn’t know you didn’t mean to close “it” later

2323Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

First get the program to compileFirst get the program to compile

 Is every name declared?Is every name declared?
 Did you include needed headers? (e.g., Did you include needed headers? (e.g., std_lib_facilities.hstd_lib_facilities.h))

 Is every name declared before it’s used?Is every name declared before it’s used?
 Did you spell all names correctly?Did you spell all names correctly?

int count;int count; /*/* …… */ ++Count; */ ++Count; // // oops!oops!
char ch;char ch; /*/* …… */ Cin>>c; */ Cin>>c; // // double oops!double oops!

 Did you terminate each expression statement with a Did you terminate each expression statement with a
semicolon?semicolon?
x = sqrt(y)+2x = sqrt(y)+2 // // oops!oops!
z = x+3;z = x+3;

2424Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

DebuggingDebugging

 Carefully follow the program through the specified Carefully follow the program through the specified
sequence of stepssequence of steps
 Pretend you’re the computer executing the programPretend you’re the computer executing the program
 Does the output match your expectations?Does the output match your expectations?
 If there isn’t enough output to help, add a few debug output If there isn’t enough output to help, add a few debug output

statementsstatements
cerr << "x == " << x << ", y == " << y << '\n';cerr << "x == " << x << ", y == " << y << '\n';

 Be very carefulBe very careful
 See what the program specifies, not what you think it See what the program specifies, not what you think it

should sayshould say
 That’s much harder to do than it soundsThat’s much harder to do than it sounds
 for (int i=0; 0<month.size(); ++i) {for (int i=0; 0<month.size(); ++i) { // // oops!oops!
 for(int i = 0; i<=max; ++j) { for(int i = 0; i<=max; ++j) { // // oops! (twice)oops! (twice)

2525Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

DebuggingDebugging

 When you write the program, insert some checks (“sanity When you write the program, insert some checks (“sanity
checks”) that variables have “reasonable values”checks”) that variables have “reasonable values”
 Function argument checks are prominent examples of thisFunction argument checks are prominent examples of this

if (number_of_elements<0)if (number_of_elements<0)
error("impossible: negative number of elements");error("impossible: negative number of elements");

if (largest_reasonable<number_of_elements)if (largest_reasonable<number_of_elements)
error("unexpectedly large number of elements");error("unexpectedly large number of elements");

if (x<y) error("impossible: x<y");if (x<y) error("impossible: x<y");

 Design these checks so that some can be left in the program Design these checks so that some can be left in the program
even after you believe it to be correcteven after you believe it to be correct
 It’s almost always better for a program to stop than to give wrong It’s almost always better for a program to stop than to give wrong

resultsresults

2626Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

DebuggingDebugging

 Pay special attention to “end cases” Pay special attention to “end cases” (beginnings and ends)(beginnings and ends)
 Did you initialize every variable?Did you initialize every variable?

 To a reasonable valueTo a reasonable value
 Did the function get the right arguments?Did the function get the right arguments?

 Did the function return the right value?Did the function return the right value?
 Did you handle the first element correctly?Did you handle the first element correctly?

 The last element?The last element?
 Did you handle the empty case correctly?Did you handle the empty case correctly?

 No elementsNo elements
 No inputNo input

 Did you open your files correctly?Did you open your files correctly?
 more on this in chapter 11more on this in chapter 11

 Did you actually read that input?Did you actually read that input?
 Write that output?Write that output?

2727Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

DebuggingDebugging

 ““If you can’t see the bug, you’re looking in the If you can’t see the bug, you’re looking in the
wrong place”wrong place”
 It’s easy to be convinced that you know what the problem It’s easy to be convinced that you know what the problem

is and stubbornly keep looking in the wrong placeis and stubbornly keep looking in the wrong place
 Don’t just guess, be guided by outputDon’t just guess, be guided by output

 Work forward through the code from a place you know is rightWork forward through the code from a place you know is right
 so what happens next? Why?so what happens next? Why?

 Work backwards from some bad outputWork backwards from some bad output
 how could that possibly happen?how could that possibly happen?

 Once you have found “the bug” carefully consider if Once you have found “the bug” carefully consider if
fixing it solves the whole problemfixing it solves the whole problem
 It’s common to introduce new bugs with a “quick fix”It’s common to introduce new bugs with a “quick fix”

 ““I found the last bug”I found the last bug”
 is a programmer’s jokeis a programmer’s joke

2828Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

NoteNote

 Error handling is fundamentally more difficult and messy than Error handling is fundamentally more difficult and messy than
“ordinary code”“ordinary code”
 There is basically just one way things can work rightThere is basically just one way things can work right
 There are many ways that things can go wrongThere are many ways that things can go wrong

 The more people use a program, the better the error handling The more people use a program, the better the error handling
must bemust be
 If you break your own code, that’s your own problemIf you break your own code, that’s your own problem

 And you’ll learn the hard wayAnd you’ll learn the hard way
 If your code is used by your friends, uncaught errors can cause you to If your code is used by your friends, uncaught errors can cause you to

lose friendslose friends
 If your code is used by strangers, uncaught errors can cause serious griefIf your code is used by strangers, uncaught errors can cause serious grief

 And they may not have a way of recoveringAnd they may not have a way of recovering

2929Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Pre-conditionsPre-conditions

 What does a function require of its arguments?What does a function require of its arguments?
 Such a requirement is called a pre-conditionSuch a requirement is called a pre-condition
 Sometimes, it’s a good idea to check itSometimes, it’s a good idea to check it

int area(int length, int width) // int area(int length, int width) // calculate area of a rectanglecalculate area of a rectangle

// // length and width must be positivelength and width must be positive

{{

if (length<=0 || width <=0) throw Bad_area();if (length<=0 || width <=0) throw Bad_area();

return length*width;return length*width;

}}

3030Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Post-conditionsPost-conditions

 What must be true when a function returns?What must be true when a function returns?
 Such a requirement is called a post-conditionSuch a requirement is called a post-condition

int area(int length, int width) // int area(int length, int width) // calculate area of a rectanglecalculate area of a rectangle

// // length and width must be positivelength and width must be positive

{{

if (length<=0 || width <=0) throw Bad_area();if (length<=0 || width <=0) throw Bad_area();

// // the result must be a positive int that is the areathe result must be a positive int that is the area

//// no variables had their values changed no variables had their values changed

return length*width;return length*width;

}}

3131Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

Pre- and post-conditionsPre- and post-conditions

 Always think about themAlways think about them
 If nothing else write them as commentsIf nothing else write them as comments
 Check them “where reasonable”Check them “where reasonable”
 Check a lot when you are looking for a bugCheck a lot when you are looking for a bug
 This can be trickyThis can be tricky

 How could the post-condition for area() fail after the pre-How could the post-condition for area() fail after the pre-
condition succeeded (held)?condition succeeded (held)?

3232Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

TestingTesting
 How do we test a program?How do we test a program?

 Be systematicBe systematic
 ““pecking at the keyboard” is okay for very small programs and pecking at the keyboard” is okay for very small programs and

for very initial tests, but is insufficient for real systemsfor very initial tests, but is insufficient for real systems

 Think of testing and correctness from the very startThink of testing and correctness from the very start
 When possible, test parts of a program in isolationWhen possible, test parts of a program in isolation

 E.g., when you write a complicated function write a little E.g., when you write a complicated function write a little
program that simply calls it with a lot of arguments to see program that simply calls it with a lot of arguments to see
how it behaves in isolation before putting it into the real how it behaves in isolation before putting it into the real
programprogram

 We’ll return to this question in Chapter 26We’ll return to this question in Chapter 26

3333Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

The next lectureThe next lecture

 In the next two lectures, we’ll discuss the In the next two lectures, we’ll discuss the
design and implementation of a complete design and implementation of a complete
small program – a simple “desk calculator.”small program – a simple “desk calculator.”

3434Stroustrup/Programming Sep'10Stroustrup/Programming Sep'10

