
Chapter 4Chapter 4
ComputationComputation

Bjarne StroustrupBjarne Stroustrup
www.stroustrup.com/Programmingwww.stroustrup.com/Programming

22

AbstractAbstract

 Today, I’ll present the basics of computation. In Today, I’ll present the basics of computation. In
particular, we’ll discuss expressions, how to particular, we’ll discuss expressions, how to
iterate over a series of values (“iteration”), and iterate over a series of values (“iteration”), and
select between two alternative actions select between two alternative actions
(“selection”). I’ll also show how a particular sub-(“selection”). I’ll also show how a particular sub-
computation can be named and specified computation can be named and specified
separately as a function. To be able to perform separately as a function. To be able to perform
more realistic computations, I will introduce the more realistic computations, I will introduce the
vectorvector type to hold sequences of values.type to hold sequences of values.

 Selection, Iteration, Function, VectorSelection, Iteration, Function, Vector

Stroustrup/ProgrammingStroustrup/Programming

33

OverviewOverview

 ComputationComputation
 What is computable? How best to compute it?What is computable? How best to compute it?
 Abstractions, algorithms, heuristics, data structuresAbstractions, algorithms, heuristics, data structures

 Language constructs and ideasLanguage constructs and ideas
 Sequential order of executionSequential order of execution
 Expressions and StatementsExpressions and Statements
 Selection Selection
 IterationIteration
 Functions Functions
 VectorsVectors

Stroustrup/ProgrammingStroustrup/Programming

44

You already know most of thisYou already know most of this

 Note:Note:
 You know how to do arithmetic You know how to do arithmetic

 d = a+b*cd = a+b*c
 You know how to selectYou know how to select

““if this is true, do that; otherwise do something else ”if this is true, do that; otherwise do something else ”
 You know how to “iterate”You know how to “iterate”

 ““do this until you are finished”do this until you are finished”
 ““do that 100 times”do that 100 times”

 You know how to do functionsYou know how to do functions
 ““go ask Joe and bring back the answer”go ask Joe and bring back the answer”
 ““hey Joe, calculate this for me and send me the answer”hey Joe, calculate this for me and send me the answer”

 What I will show you today is mostly just vocabulary and What I will show you today is mostly just vocabulary and
syntax for what you already knowsyntax for what you already know

Stroustrup/ProgrammingStroustrup/Programming

55

ComputationComputation

 Input: from keyboard, files, other input devices, other programs, other parts of Input: from keyboard, files, other input devices, other programs, other parts of
a programa program

 Computation – what our program will do with the input to produce the output.Computation – what our program will do with the input to produce the output.
 Output: to screen, files, other output devices, other programs, other parts of a Output: to screen, files, other output devices, other programs, other parts of a

programprogram

(input) data (output) data

data

Code, often messy,

often a lot of code

Stroustrup/ProgrammingStroustrup/Programming

66

ComputationComputation
 Our job is to express computationsOur job is to express computations

 CorrectlyCorrectly
 SimplySimply
 EfficientlyEfficiently

 One tool is called Divide and ConquerOne tool is called Divide and Conquer
 to break up big computations into many little onesto break up big computations into many little ones

 Another tool is AbstractionAnother tool is Abstraction
 Provide a higher-level concept that hides detailProvide a higher-level concept that hides detail

 Organization of data is often the key to good codeOrganization of data is often the key to good code
 Input/output formatsInput/output formats
 ProtocolsProtocols
 Data structuresData structures

 Note the emphasis on structure and organizationNote the emphasis on structure and organization
 You don’t get good code just by writing a lot of statementsYou don’t get good code just by writing a lot of statements

Stroustrup/ProgrammingStroustrup/Programming

77

Language featuresLanguage features
 Each programming language feature exists to express Each programming language feature exists to express

a fundamental ideaa fundamental idea
 For exampleFor example

 + + : addition: addition
 * * : multiplication: multiplication
 if (if (expressionexpression)) statement statement elseelse statement ; statement ; selection selection
 while (while (expressionexpression)) statement statement ;; iterationiteration
 f(x); f(x); function/operationfunction/operation
 ……

 We combine language features to create programsWe combine language features to create programs

Stroustrup/ProgrammingStroustrup/Programming

88

ExpressionsExpressions
// // compute area:compute area:
int length = 20;int length = 20; //// the simplest expression: a literal (here, 20)the simplest expression: a literal (here, 20)

// // (here used to initialize a variable)(here used to initialize a variable)
int width = 40;int width = 40;
int area = length*width;int area = length*width; // // a multiplicationa multiplication
int average = (length+width)/2;int average = (length+width)/2; //// addition and divisionaddition and division

The usual rules of precedence apply:The usual rules of precedence apply:
a*b+c/da*b+c/d means means (a*b)+(c/d)(a*b)+(c/d) and not and not a*(b+c)/da*(b+c)/d..

If in doubt, parenthesize. If complicated, parenthesize.If in doubt, parenthesize. If complicated, parenthesize.
Don’t write “absurdly complicated” expressions:Don’t write “absurdly complicated” expressions:

a*b+c/d*(e-f/g)/h+7a*b+c/d*(e-f/g)/h+7 // // too complicatedtoo complicated

Choose meaningful names.Choose meaningful names.

Stroustrup/ProgrammingStroustrup/Programming

99

ExpressionsExpressions

 Expressions are made out of operators and operandsExpressions are made out of operators and operands
 Operators specify what is to be doneOperators specify what is to be done
 Operands specify the data for the operators to work withOperands specify the data for the operators to work with

 Boolean type: Boolean type: bool bool ((true true andand false false))
 Equality operators:Equality operators: = == = (equal), (equal), !=!= (not equal) (not equal)
 Logical operators: Logical operators: &&&& (and), (and), |||| (or), (or), ! ! (not)(not)
 Relational operators: Relational operators: << (less than), (less than), >> (greater than), (greater than), <=<=, , >=>=

 Character type: Character type: charchar (e.g., (e.g., 'a''a',, '7' '7', and , and '@''@'))
 Integer types: Integer types: short, int, longshort, int, long

 arithmetic operators: arithmetic operators: +, -, *, /, %+, -, *, /, % (remainder) (remainder)
 Floating-point types: e.g., Floating-point types: e.g., float, doublefloat, double (e.g., (e.g., 12.45 12.45 andand 1.234e3 1.234e3))

 arithmetic operators: arithmetic operators: +, -, *, /+, -, *, /

Stroustrup/ProgrammingStroustrup/Programming

1010

Concise OperatorsConcise Operators

 For many binary operators, there are (roughly) equivalent For many binary operators, there are (roughly) equivalent
more concise operatorsmore concise operators
 For exampleFor example

 a += c a += c meansmeans a = a+ca = a+c
 a *= scale a *= scale meansmeans a = a*scalea = a*scale
 ++a ++a meansmeans a += 1a += 1

or or a = a+1a = a+1

 ““Concise operators” are generally better to useConcise operators” are generally better to use

(clearer, express an idea more directly)(clearer, express an idea more directly)

Stroustrup/ProgrammingStroustrup/Programming

1111

StatementsStatements
 A statement isA statement is

 an expression followed by a semicolon, oran expression followed by a semicolon, or
 a declaration, ora declaration, or
 a “control statement” that determines the flow of controla “control statement” that determines the flow of control

 For exampleFor example
 a = b;a = b;
 double d2 = 2.5;double d2 = 2.5;
 if (x == 2) y = 4;if (x == 2) y = 4;
 while (cin >> number) numbers.push_back(number);while (cin >> number) numbers.push_back(number);
 int average = (length+width)/2;int average = (length+width)/2;
 return x;return x;

 You may not understand all of these just now, but you will …You may not understand all of these just now, but you will …

Stroustrup/ProgrammingStroustrup/Programming

1212

SelectionSelection
 Sometimes we must select between alternativesSometimes we must select between alternatives
 For example, suppose we want to identify the larger of two For example, suppose we want to identify the larger of two

values. We can do this with an values. We can do this with an ifif statement statement
if (a<b)if (a<b) //// Note: No semicolon hereNote: No semicolon here
 max = b;max = b;
elseelse //// Note: No semicolon hereNote: No semicolon here
 max = a;max = a;

 The syntax isThe syntax is
if (condition)if (condition)
 statement-1statement-1 //// if the condition is true, do statement-1if the condition is true, do statement-1
elseelse
 statement-2statement-2 //// if not, do statement-2if not, do statement-2

Stroustrup/ProgrammingStroustrup/Programming

1313

Iteration (while loop) Iteration (while loop)
 The world’s first “real program” running on a stored-program The world’s first “real program” running on a stored-program

computer (David Wheeler, Cambridge, May 6, 1949)computer (David Wheeler, Cambridge, May 6, 1949)

// // calculate and print a table of squares 0-99:calculate and print a table of squares 0-99:

int main()int main()

{{

int i = 0;int i = 0;

while (i<100) {while (i<100) {

cout << i << cout << i << ''\t\t'' << square(i) << << square(i) << ''\n\n'';;

++i ;++i ; // // incrementincrement i i

}}

}}

// // (No, it wasn’t actually written in C++ (No, it wasn’t actually written in C++ .).)

Stroustrup/ProgrammingStroustrup/Programming

1414

Iteration (while loop)Iteration (while loop)
 What it takesWhat it takes

 A loop variable (control variable); A loop variable (control variable); here: here: ii
 Initialize the control variable; Initialize the control variable; here: here: int i = 0int i = 0
 AA termination criterion; termination criterion; here: if here: if i<100 i<100 is false, terminateis false, terminate
 Increment the control variable;Increment the control variable; here: here: ++i++i
 Something to do for each iteration; Something to do for each iteration; here: here: cout << …cout << …

int i = 0;int i = 0;
while (i<100) {while (i<100) {

cout << i << cout << i << ''\t\t'' << square(i) << << square(i) << ''\n\n'';;
++i ;++i ; // // incrementincrement i i

}}

Stroustrup/ProgrammingStroustrup/Programming

1515

Iteration (for loop)Iteration (for loop)

 Another iteration form: the Another iteration form: the forfor loop loop
 You can collect all the control information in one You can collect all the control information in one

place, at the top, where it’s easy to seeplace, at the top, where it’s easy to see

for (int i = 0; i<100; ++i) {for (int i = 0; i<100; ++i) {
cout << i << cout << i << ''\t\t'' << square(i) << << square(i) << ''\n\n'';;

}}

That is,That is,
for (for (initializeinitialize; ; conditioncondition ; ; increment increment))
controlled statement controlled statement

Note: what isNote: what is square(i) square(i)??

Stroustrup/ProgrammingStroustrup/Programming

1616

FunctionsFunctions

 But what was But what was square(i)?square(i)?
 A call of the function A call of the function square()square()

int square(int x)int square(int x)

{{

 return x*x;return x*x;

 }}

 We define a function when we want to separate a We define a function when we want to separate a
computation because itcomputation because it
 is logically separateis logically separate
 makes the program text clearer (by naming the computation)makes the program text clearer (by naming the computation)
 is useful in more than one place in our programis useful in more than one place in our program
 eases testing, distribution of labor, and maintenanceeases testing, distribution of labor, and maintenance

Stroustrup/ProgrammingStroustrup/Programming

1717

Control FlowControl Flow

int main()int main()

{{

 i=0;i=0;

while (i<100) while (i<100)

{{

square(i) square(i)

}}

}}

int square(int x)int square(int x)

{{

return x * x;return x * x;

 }}

i<100

i==100
Stroustrup/ProgrammingStroustrup/Programming

1818

FunctionsFunctions
 Our functionOur function

int square(int x)int square(int x)

{{

return x*x;return x*x;

}}

is an example ofis an example of
Return_type function_name Return_type function_name ((Parameter list Parameter list))

// // (type name, etc.)(type name, etc.)

{{

// // use each parameter in codeuse each parameter in code

return return some_valuesome_value;; // // ofof Return_type Return_type

}}

Stroustrup/ProgrammingStroustrup/Programming

1919

Another ExampleAnother Example
 Earlier we looked at code to find the larger of two values. Here is a Earlier we looked at code to find the larger of two values. Here is a

function that compares the two values and returns the larger value. function that compares the two values and returns the larger value.

int max(int a, int b) int max(int a, int b) // // this function takes 2 parametersthis function takes 2 parameters

{{

if (a<b)if (a<b)

 return b;return b;

elseelse

 return a;return a;

}}

int x = max(7, 9);int x = max(7, 9); // // x becomes 9x becomes 9

int y = max(19, -27);int y = max(19, -27); // // y becomes 19y becomes 19

int z = max(20, 20);int z = max(20, 20); //// z becomes 20z becomes 20

Stroustrup/ProgrammingStroustrup/Programming

2020

Data for Iteration - VectorData for Iteration - Vector
 To do just about anything of interest, we need a collection of To do just about anything of interest, we need a collection of
 data to work on. We can store this data in a data to work on. We can store this data in a vectorvector. For example:. For example:

//// read some temperatures into a vector:read some temperatures into a vector:
int main()int main()
{{

vector<double> temps; vector<double> temps; // // declare a vector of type double to store declare a vector of type double to store //// temperatures – like 62.4temperatures – like 62.4
double temp;double temp; // // a variable for a single temperature valuea variable for a single temperature value
while (cin>>temp) while (cin>>temp) // // cin reads a value and stores it in tempcin reads a value and stores it in temp
 temps.push_back(temp); temps.push_back(temp); // // store the value of temp in the vectorstore the value of temp in the vector
// // … do something …… do something …

}}
// // cin>>temp cin>>temp will return true until we reach the end of file or encounter will return true until we reach the end of file or encounter
//// something that isn’t a double: like the word “end”something that isn’t a double: like the word “end”

Stroustrup/ProgrammingStroustrup/Programming

2121

VectorVector
 Vector is the most useful standard library data typeVector is the most useful standard library data type

 a a vector<T>vector<T> holds an sequence of values of type holds an sequence of values of type TT
 Think of a vector this wayThink of a vector this way

A vector named A vector named vv contains 5 elements: {1, 4, 2, 3, 5}: contains 5 elements: {1, 4, 2, 3, 5}:

1 4 2 3 5

5v:

v’s elements:

v[0] v[1] v[2] v[3] v[4]

size()

Stroustrup/ProgrammingStroustrup/Programming

2222

VectorsVectors
vector<int> v;vector<int> v; // // start off emptystart off empty

v.push_back(1);v.push_back(1); // // add an element with the value add an element with the value 11

v.push_back(4);v.push_back(4); // // add an element with the valueadd an element with the value 4 4 at end (“the back”)at end (“the back”)

v.push_back(3);v.push_back(3); // // add an element with the valueadd an element with the value 3 3 at end (“the back”)at end (“the back”)

 v[0]v[0] v[1] v[2] v[1] v[2]

0 v:

3

2

1 1

41

341

v:

v:

v:

Stroustrup/ProgrammingStroustrup/Programming

2323

VectorsVectors
 Once you get your data into a vector you can easily manipulate it:Once you get your data into a vector you can easily manipulate it:

// // compute mean (average) and median temperatures:compute mean (average) and median temperatures:
int main()int main()
{{

vector<double> temps;vector<double> temps; // // temperatures in Fahrenheit, e.g. 64.6temperatures in Fahrenheit, e.g. 64.6
double temp;double temp;
while (cin>>temp) temps.push_back(temp); // while (cin>>temp) temps.push_back(temp); // read and put into vectorread and put into vector

double sum = 0;double sum = 0;
for (int i = 0; i< temps.size(); ++i) sum += temps[i]; for (int i = 0; i< temps.size(); ++i) sum += temps[i];
// // sums temperaturessums temperatures

cout << "Mean temperature: " << sum/temps.size() << endl;cout << "Mean temperature: " << sum/temps.size() << endl;
sort(temps.begin(),temps.end());sort(temps.begin(),temps.end());
cout << "Median temperature: " << temps[temps.size()/2] << endl;cout << "Median temperature: " << temps[temps.size()/2] << endl;

}}

Stroustrup/ProgrammingStroustrup/Programming

2424

Combining Language FeaturesCombining Language Features
 You can write many new programs by combining You can write many new programs by combining

language features, built-in types, and user-defined language features, built-in types, and user-defined
types in new and interesting ways.types in new and interesting ways.
 So far, we haveSo far, we have

 Variables and literals of types Variables and literals of types bool, char, int, doublebool, char, int, double

 vector, push_back(), []vector, push_back(), [] (subscripting) (subscripting)
 !=, ==, =, +, -, +=, <, &&, ||, !!=, ==, =, +, -, +=, <, &&, ||, !
 max(), sort(), cin>>, cout<<max(), sort(), cin>>, cout<<
 if, for, whileif, for, while

 You can write a lot of different programs with these You can write a lot of different programs with these
language features! Let’s try to use them in a slightly language features! Let’s try to use them in a slightly
different way…different way…

Stroustrup/ProgrammingStroustrup/Programming

2525

Example – Word ListExample – Word List
// // “boilerplate” left out“boilerplate” left out

vector<string> words;vector<string> words;
string s;string s;
while (cin>>s && s != "quit") while (cin>>s && s != "quit") // // && means AND&& means AND

words.push_back(s);words.push_back(s);

sort(words.begin(), words.end());sort(words.begin(), words.end()); // // sort the words we readsort the words we read

for (int i=0; i<words.size(); ++i) for (int i=0; i<words.size(); ++i)
cout<<words[i]<< "\n";cout<<words[i]<< "\n";

 /*/*
 read a bunch of strings into a vector of strings, sortread a bunch of strings into a vector of strings, sort
 them into lexicographical order (alphabetical order), them into lexicographical order (alphabetical order),
 and print the strings from the vector to see what we have. and print the strings from the vector to see what we have.
//

Stroustrup/ProgrammingStroustrup/Programming

2626

Word list – Eliminate DuplicatesWord list – Eliminate Duplicates
// // Note that duplicate words were printed multiple times. ForNote that duplicate words were printed multiple times. For
// // example “the the the”. That’s tedious, let’s eliminate duplicates:example “the the the”. That’s tedious, let’s eliminate duplicates:

 vector<string> words;vector<string> words;
string s;string s;
while (cin>>s && s!= "quit") words.push_back(s);while (cin>>s && s!= "quit") words.push_back(s);

sort(words.begin(), words.end());sort(words.begin(), words.end());

for (int i=1; i<words.size(); ++i) for (int i=1; i<words.size(); ++i)
if(words[i-1]==words[i]) if(words[i-1]==words[i])

““get rid of words[i]” // (pseudocode)get rid of words[i]” // (pseudocode)
for (int i=0; i<words.size(); ++i) cout<<words[i]<< "\n";for (int i=0; i<words.size(); ++i) cout<<words[i]<< "\n";

// // there are many ways to “get rid of words[i]”; many of them are messythere are many ways to “get rid of words[i]”; many of them are messy
//// (that’s typical). Our job as programmers is to choose a simple clean (that’s typical). Our job as programmers is to choose a simple clean
//// solution – given constraints – time, run-time, memory. solution – given constraints – time, run-time, memory.

Stroustrup/ProgrammingStroustrup/Programming

2727

Example (cont.) Eliminate Words!Example (cont.) Eliminate Words!
// // Eliminate the duplicate words by copying only unique words:Eliminate the duplicate words by copying only unique words:
 vector<string> words;vector<string> words;

string s;string s;
while (cin>>s && s!= "quit") words.push_back(s);while (cin>>s && s!= "quit") words.push_back(s);
sort(words.begin(), words.end());sort(words.begin(), words.end());
vector<string>w2;vector<string>w2;
if (0<words.size()) {if (0<words.size()) { // // Note style { }Note style { }

w2.push_back(words[0]);w2.push_back(words[0]);
for (int i=1; i<words.size(); ++i) for (int i=1; i<words.size(); ++i)

if(words[i-1]!=words[i])if(words[i-1]!=words[i])
 w2.push_back(words[i]); w2.push_back(words[i]);

 }}
cout<< "found " << words.size()-w2.size() << " duplicates\n";cout<< "found " << words.size()-w2.size() << " duplicates\n";
for (int i=0; i<w2.size(); ++i) cout << w2[i] << "\n";for (int i=0; i<w2.size(); ++i) cout << w2[i] << "\n";

Stroustrup/ProgrammingStroustrup/Programming

2828

AlgorithmAlgorithm
 We just used a simple algorithmWe just used a simple algorithm
 An algorithm is (from Google search)An algorithm is (from Google search)

 ““a logical arithmetical or computational procedure that, if correctly applied, ensures a logical arithmetical or computational procedure that, if correctly applied, ensures
the solution of a problem.” – the solution of a problem.” – Harper CollinsHarper Collins

 ““a set of rules for solving a problem in a finite number of steps, as for finding the a set of rules for solving a problem in a finite number of steps, as for finding the
greatest common divisor.” – greatest common divisor.” – Random HouseRandom House

 ““a detailed sequence of actions to perform or accomplish some task. Named after an a detailed sequence of actions to perform or accomplish some task. Named after an
Iranian mathematician, Al-Khawarizmi. Technically, an algorithm must reach a result Iranian mathematician, Al-Khawarizmi. Technically, an algorithm must reach a result
after a finite number of steps, …The term is also used loosely for any sequence of after a finite number of steps, …The term is also used loosely for any sequence of
actions (which may or may not terminate).” – actions (which may or may not terminate).” – Webster’s Webster’s

 We eliminated the duplicates by first sorting the vector (so that We eliminated the duplicates by first sorting the vector (so that
duplicates are adjacent), and then copying only strings that duplicates are adjacent), and then copying only strings that
differ from their predecessor into another vector.differ from their predecessor into another vector.

Stroustrup/ProgrammingStroustrup/Programming

2929

IdealIdeal

 Basic language features and libraries should be Basic language features and libraries should be
usable in essentially arbitrary combinations.usable in essentially arbitrary combinations.
 We are not too far from that ideal.We are not too far from that ideal.
 If a combination of features and types make sense, If a combination of features and types make sense,

it will probably work.it will probably work.
 The compiler helps by rejecting some absurdities.The compiler helps by rejecting some absurdities.

Stroustrup/ProgrammingStroustrup/Programming

3030

The next lectureThe next lecture

 How to deal with errorsHow to deal with errors

Stroustrup/ProgrammingStroustrup/Programming

