
Chapter 3Chapter 3
Objects, types, and valuesObjects, types, and values

Bjarne StroustrupBjarne Stroustrup

www.stroustrup.com/Programmingwww.stroustrup.com/Programming

OverviewOverview

 Strings and string I/OStrings and string I/O
 Integers and integer I/OIntegers and integer I/O
 Types and objectsTypes and objects
 Type safetyType safety

33Stroustrup/ProgrammingStroustrup/Programming

Input and outputInput and output

// // read first name:read first name:
#include "std_lib_facilities_3.h"#include "std_lib_facilities_3.h" // // our course headerour course header

int main()int main()
{{

cout << "Please enter your first name (followed " << "by 'enter'):\n";cout << "Please enter your first name (followed " << "by 'enter'):\n";
string first_name;string first_name;
cin >> first_name;cin >> first_name;
cout << "Hello, " << first_name << '\n';cout << "Hello, " << first_name << '\n';

}}

//// note how several values can be output by a single statementnote how several values can be output by a single statement
//// a statement that introduces a variable is called a declaration a statement that introduces a variable is called a declaration
//// a variable holds a value of a specified type a variable holds a value of a specified type
//// the final the final return 0;return 0; is optional in is optional in main()main()
//// but you may need to include it to pacify your compiler but you may need to include it to pacify your compiler

44Stroustrup/ProgrammingStroustrup/Programming

Source filesSource files

 "std_lib_facilities_3.h" is the header for our course"std_lib_facilities_3.h" is the header for our course
55

Interfaces to libraries
(declarations)

 #include "std_lib_facilities_3.h"

My code
My data

(definitions)

Myfile.cpp:

std_lib_facilities_3.h:

Stroustrup/ProgrammingStroustrup/Programming

Input and typeInput and type

 We read into a variableWe read into a variable
 Here, Here, first_namefirst_name

 A A variablevariable has a type has a type
 Here, Here, stringstring

 The type of a variable determines what operations we The type of a variable determines what operations we
can do on itcan do on it
 Here, Here, cin>>first_name;cin>>first_name; reads characters until a whitespace reads characters until a whitespace

character is seen (“a word”)character is seen (“a word”)
 White space: space, tab, newline, …White space: space, tab, newline, …

66Stroustrup/ProgrammingStroustrup/Programming

String inputString input

// // read first and second name:read first and second name:
int main()int main()
{{

cout << "please enter your first and second names\n";cout << "please enter your first and second names\n";
string first;string first;
string second;string second;
cin >> first >> second;cin >> first >> second; // // read two stringsread two strings
string name = first + ' ' + second;string name = first + ' ' + second; // // concatenate stringsconcatenate strings
// // separated by a spaceseparated by a space
cout << "Hello, "<< name << '\n';cout << "Hello, "<< name << '\n';

}}

// // I left out theI left out the #include "std_lib_facilities_3.h" #include "std_lib_facilities_3.h" to save space and to save space and
//// reduce distraction reduce distraction
//// Don’t forget it in real codeDon’t forget it in real code
//// Similarly, I left out the Windows-specific Similarly, I left out the Windows-specific keep_window_open();keep_window_open();

77Stroustrup/ProgrammingStroustrup/Programming

IntegersIntegers

// // read name and age:read name and age:

int main()int main()

{{

cout << "please enter your first name and age\n";cout << "please enter your first name and age\n";

string first_name;string first_name; // // string variablestring variable

int age;int age; // // integer variableinteger variable

cin >> first_name >> age;cin >> first_name >> age; // // readread

cout << "Hello, " << first_name << " age " << age << '\n';cout << "Hello, " << first_name << " age " << age << '\n';

}}

88Stroustrup/ProgrammingStroustrup/Programming

Integers and StringsIntegers and Strings

 StringsStrings
 cin >>cin >> reads a word reads a word
 cout <<cout << writes writes
 ++ concatenates concatenates
 += s+= s adds the string adds the string ss at end at end
 ++++ is an error is an error
 -- is an error is an error

 ……

 Integers and floating-point numbersIntegers and floating-point numbers
 cin >>cin >> reads a number reads a number
 cout <<cout << writes writes
 ++ adds adds
 += n+= n increments by the int increments by the int nn
 ++++ increments by increments by 11
 -- subtracts subtracts
 ……

99

The type of a variable determines which operations are valid
and what their meanings are for that type

(that's called “overloading” or “operator overloading”)

Stroustrup/ProgrammingStroustrup/Programming

NamesNames

 A name in a C++ programA name in a C++ program
 Starts with a letter, contains letters, digits, and underscores Starts with a letter, contains letters, digits, and underscores

(only)(only)
 x, number_of_elements, Fourier_transform, z2x, number_of_elements, Fourier_transform, z2
 Not names:Not names:

 12x12x
 timetomarkettimetomarket
 main linemain line

 Do not start names with underscores: Do not start names with underscores: _foo_foo
 those are reserved for implementation and systems entitiesthose are reserved for implementation and systems entities

 Users can't define names that are taken as keywordsUsers can't define names that are taken as keywords
 E.g.:E.g.:

 intint
 ifif
 whilewhile
 doubledouble

1010Stroustrup/ProgrammingStroustrup/Programming

NamesNames

 Choose meaningful namesChoose meaningful names
 Abbreviations and acronyms can confuse peopleAbbreviations and acronyms can confuse people

 mtbf, TLA, myw, nbvmtbf, TLA, myw, nbv
 Short names can be meaningfulShort names can be meaningful

 (only) when used conventionally:(only) when used conventionally:
 xx is a local variable is a local variable
 ii is a loop index is a loop index

 Don't use overly long namesDon't use overly long names
 Ok:Ok:

 partial_sumpartial_sum
element_countelement_count
staple_partitionstaple_partition

 Too long:Too long:
 the_number_of_elementsthe_number_of_elements

remaining_free_slots_in_the_symbol_tableremaining_free_slots_in_the_symbol_table

1111Stroustrup/ProgrammingStroustrup/Programming

Simple arithmeticSimple arithmetic
// // do a bit of very simple arithmetic:do a bit of very simple arithmetic:

int main()int main()
{{

cout << "please enter a floating-point number: "; // cout << "please enter a floating-point number: "; // prompt for a numberprompt for a number
double n;double n; // // floating-point variablefloating-point variable
cin >> n;cin >> n;
cout << "n == " << ncout << "n == " << n
<< "\nn+1 == " << n+1<< "\nn+1 == " << n+1 // // '\n' means “a newline”'\n' means “a newline”
<< "\nthree times n == " << 3*n<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n<< "\ntwice n == " << n+n
<< "\nn squared == " << n*n<< "\nn squared == " << n*n
<< "\nhalf of n == " << n/2<< "\nhalf of n == " << n/2
<< "\nsquare root of n == " << sqrt(n) // << "\nsquare root of n == " << sqrt(n) // library functionlibrary function
<< endl;<< endl; // // another name for newlineanother name for newline

}}

1212Stroustrup/ProgrammingStroustrup/Programming

A simple computationA simple computation

int main()int main() // // inch to cm conversioninch to cm conversion

{{

const double cm_per_inch = 2.54; // const double cm_per_inch = 2.54; // number of centimeters per inchnumber of centimeters per inch

int length = 1;int length = 1; // // length in incheslength in inches

while (length != 0) while (length != 0) // // length == 0 is used to exit the programlength == 0 is used to exit the program

{ { // // a compound statement (a block)a compound statement (a block)

cout << "Please enter a length in inches: ";cout << "Please enter a length in inches: ";

cin >> length;cin >> length;

cout << length << "in. = "cout << length << "in. = "

 << cm_per_inch*length << "cm.\n";<< cm_per_inch*length << "cm.\n";

}}

}}
 AA while-statement repeatedly executes until its condition becomes falsewhile-statement repeatedly executes until its condition becomes false

1313Stroustrup/ProgrammingStroustrup/Programming

Types and literalsTypes and literals
 Built-in typesBuilt-in types

 Boolean typeBoolean type
 boolbool

 Character typesCharacter types
 charchar

 Integer typesInteger types
 intint

 and short and short andand long long
 Floating-point typesFloating-point types

 doubledouble
 andand float float

 Standard-library typesStandard-library types
 stringstring

 complex<Scalar>complex<Scalar>

 Boolean literalsBoolean literals
 true falsetrue false

 Character literalsCharacter literals
 'a', 'x', '4', '\n', '$''a', 'x', '4', '\n', '$'

 Integer literalsInteger literals
 0, 1, 123, -6, 034, 0xa30, 1, 123, -6, 034, 0xa3

 Floating point literalsFloating point literals
 1.2, 13.345, .3, -0.54, 1.2e3, .3F1.2, 13.345, .3, -0.54, 1.2e3, .3F

 String literals String literals "asdf""asdf", ,
"Howdy, all y'all!""Howdy, all y'all!"

 Complex literalsComplex literals
 complex<double>(12.3,99)complex<double>(12.3,99)
 complex<float>(1.3F)complex<float>(1.3F)

1414

If (and only if) you need more details, see the book!If (and only if) you need more details, see the book!
Stroustrup/ProgrammingStroustrup/Programming

Types Types

 C++ provides a set of typesC++ provides a set of types
 E.g. E.g. boolbool,, char char, , intint, , doubledouble
 Called Called “built-in types”“built-in types”

 C++ programmers can define new typesC++ programmers can define new types
 Called Called “user-defined types”“user-defined types”
 We'll get to that eventuallyWe'll get to that eventually

 The C++ standard library provides a set of typesThe C++ standard library provides a set of types
 E.g. E.g. stringstring,, vector vector,, complex complex

 Technically, these are user-defined typesTechnically, these are user-defined types
 they are built using only facilities available to every userthey are built using only facilities available to every user

1515Stroustrup/ProgrammingStroustrup/Programming

Declaration and initializationDeclaration and initialization

int a = 7;int a = 7;

int b = 9;int b = 9;

char c = 'a';char c = 'a';

double x = 1.2;double x = 1.2;

string s1 = "Hello, world";string s1 = "Hello, world";

string s2 = "1.2";string s2 = "1.2";

1616

7

9

'a'

1.2

12 | "Hello, world"

3 | "1.2"

a:

b:

c:

x:

s1:

s2:

Stroustrup/ProgrammingStroustrup/Programming

ObjectsObjects

 An object is some memory that can hold a value of a given typeAn object is some memory that can hold a value of a given type
 A variable is a named objectA variable is a named object
 A declaration names an objectA declaration names an object

int a = 7;int a = 7;
char c = 'x';char c = 'x';
complex<double> z(1.0,2.0);complex<double> z(1.0,2.0);
string s = "qwerty";string s = "qwerty";

1717

7

'x'

1.0

"qwerty"

2.0

6

a:

s:

c:

z:

Stroustrup/ProgrammingStroustrup/Programming

Type safetyType safety
 Language rule: type safetyLanguage rule: type safety

 Every object will be used only according to its typeEvery object will be used only according to its type
 A variable will be used only after it has been initializedA variable will be used only after it has been initialized
 Only operations defined for the variable's declared type will be Only operations defined for the variable's declared type will be

appliedapplied
 Every operation defined for a variable leaves the variable with a Every operation defined for a variable leaves the variable with a

valid valuevalid value
 Ideal: static type safetyIdeal: static type safety

 A program that violates type safety will not compileA program that violates type safety will not compile
 The compiler reports every violation (in an ideal system)The compiler reports every violation (in an ideal system)

 Ideal: dynamic type safetyIdeal: dynamic type safety
 If you write a program that violates type safety it will be If you write a program that violates type safety it will be

detected at run timedetected at run time
 Some code (typically "the run-time system") detects every violation Some code (typically "the run-time system") detects every violation

not found by the compiler (in an ideal system)not found by the compiler (in an ideal system)

1818Stroustrup/ProgrammingStroustrup/Programming

Type safetyType safety
 Type safety is a very big dealType safety is a very big deal

 Try very hard not to violate itTry very hard not to violate it
 ““when you program, the compiler is your best friendwhen you program, the compiler is your best friend””

 But it wonBut it won’t feel like that when it rejects code you’t feel like that when it rejects code you’’re sure is correctre sure is correct

 C++ is not (completely) statically type safeC++ is not (completely) statically type safe
 No widely-used language is (completely) statically type safeNo widely-used language is (completely) statically type safe
 Being completely statically type safe may interfere with your ability to Being completely statically type safe may interfere with your ability to

express ideasexpress ideas
 C++ is not (completely) dynamically type safeC++ is not (completely) dynamically type safe

 Many languages are dynamically type safeMany languages are dynamically type safe
 Being completely dynamically type safe may interfere with the ability to Being completely dynamically type safe may interfere with the ability to

express ideas and often makes generated code bigger and/or slowerexpress ideas and often makes generated code bigger and/or slower
 Almost all of what you’ll be taught here is type safeAlmost all of what you’ll be taught here is type safe

 WeWe’ll specifically mention anything that is not’ll specifically mention anything that is not

1919Stroustrup/ProgrammingStroustrup/Programming

Assignment and incrementAssignment and increment

// // changing the value of a variablechanging the value of a variable

int a = 7; // int a = 7; // a variable of typea variable of type int int calledcalled a a

 // // initialized to the integer valueinitialized to the integer value 7 7

a = 9;a = 9; // // assignment: now change assignment: now change aa's value to 's value to 99

a = a+a; // a = a+a; // assignment: now doubleassignment: now double a a's's valuevalue

a += 2; // a += 2; // increment increment aa's value by's value by 2 2

++a;++a; // // increment increment aa's value (by's value (by 1 1))

2020

7

9

18

20

21

a:

Stroustrup/ProgrammingStroustrup/Programming

A type-safety violationA type-safety violation
((““implicit narrowingimplicit narrowing””))

// // Beware: C++ does not prevent you from trying to put a large valueBeware: C++ does not prevent you from trying to put a large value
// // into a small variable (though a compiler may warn)into a small variable (though a compiler may warn)

int main()int main()
{{

int a = 20000;int a = 20000;
char c = a;char c = a;
int b = c;int b = c;
if (a != b)if (a != b) // // != != means “not equal”means “not equal”

cout << "oops!: " << a << "!=" << b << '\n';cout << "oops!: " << a << "!=" << b << '\n';
elseelse

cout << "Wow! We have large characters\n";cout << "Wow! We have large characters\n";
}}

 Try it to see what valueTry it to see what value b b gets on your machinegets on your machine
2121

20000a

???c:

Stroustrup/ProgrammingStroustrup/Programming

A type-safety violation A type-safety violation (Uninitialized variables)(Uninitialized variables)

// // Beware: C++ does not prevent you from trying to use a variableBeware: C++ does not prevent you from trying to use a variable
// // before you have initialized it (though a compiler typically warns)before you have initialized it (though a compiler typically warns)

int main()int main()
{{

int x;int x; // // x gets a “random” initial valuex gets a “random” initial value
char c; char c; // // c gets a “random” initial valuec gets a “random” initial value
double d; double d; // // d gets a “random” initial valued gets a “random” initial value

//// – not every bit pattern is a valid floating-point value– not every bit pattern is a valid floating-point value
double dd = d;double dd = d; // // potential error: some implementationspotential error: some implementations

//// cancan’’t copy invalid floating-point valuest copy invalid floating-point values
cout << " x: " << x << " c: " << c << " d: " << d << '\n';cout << " x: " << x << " c: " << c << " d: " << d << '\n';

}}
 Always initialize your variables – beware: Always initialize your variables – beware: ““debug modedebug mode”” may initialize may initialize

(valid exception to this rule: input variable)(valid exception to this rule: input variable)

2222Stroustrup/ProgrammingStroustrup/Programming

A technical detailA technical detail

 In memory, everything is just bits; type is what gives meaning In memory, everything is just bits; type is what gives meaning
to the bitsto the bits
(bits/binary) (bits/binary) 01100001 01100001 is the intis the int 97 97 is the charis the char 'a' 'a'
(bits/binary) (bits/binary) 01000001 01000001 is the intis the int 65 65 is the charis the char 'A' 'A'
(bits/binary) (bits/binary) 00110000 00110000 is the intis the int 48 48 is the charis the char '0' '0'

char c = 'a';char c = 'a';
cout << c;cout << c; // // print the value of character print the value of character cc, which is , which is aa
int i = c;int i = c;
cout << i;cout << i; // // print the integer value of the characterprint the integer value of the character c, c, which is which is 9797

 This is just as in This is just as in ““the real worldthe real world””::
 What does What does ““4242”” mean? mean?
 You donYou don’’tt know until you know the unit usedknow until you know the unit used

 Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? …Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? …

2323Stroustrup/ProgrammingStroustrup/Programming

About EfficiencyAbout Efficiency
 For now, don’t worry about “efficiency”For now, don’t worry about “efficiency”

 Concentrate on correctness and simplicity of codeConcentrate on correctness and simplicity of code
 C++ is derived from C, which is a systems programming languageC++ is derived from C, which is a systems programming language

 C++C++’s built-in types map directly to computer main memory’s built-in types map directly to computer main memory
 a a charchar is stored in a byte is stored in a byte
 An An intint is stored in a word is stored in a word
 A A doubledouble fits in a floating-point register fits in a floating-point register

 C++C++’s built-in operations map directly to machine instructions’s built-in operations map directly to machine instructions
 An integer + is implemented by an integer add operationAn integer + is implemented by an integer add operation
 An integer = is implemented by a simple copy operationAn integer = is implemented by a simple copy operation

 C++ provides direct access to most of the facilities provided by modern C++ provides direct access to most of the facilities provided by modern
hardware hardware

 C++ help users build safer, more elegant, and efficient new types C++ help users build safer, more elegant, and efficient new types
and operations using built-in types and operations.and operations using built-in types and operations.
 E.g., E.g., stringstring
 Eventually, weEventually, we’ll show some of how that’s done’ll show some of how that’s done

2424Stroustrup/ProgrammingStroustrup/Programming

A bit of philosophyA bit of philosophy

 One of the ways that programming resembles other kinds of One of the ways that programming resembles other kinds of
engineering is that it involves tradeoffs.engineering is that it involves tradeoffs.

 You must have ideals, but they often conflict, so you must decide You must have ideals, but they often conflict, so you must decide
what really matters for a given program.what really matters for a given program.
 Type safetyType safety
 Run-time performanceRun-time performance
 Ability to run on a given platformAbility to run on a given platform
 Ability to run on multiple platforms with same resultsAbility to run on multiple platforms with same results
 Compatibility with other code and systemsCompatibility with other code and systems
 Ease of constructionEase of construction
 Ease of maintenanceEase of maintenance

 Don’t skimp on correctness or testingDon’t skimp on correctness or testing
 By default, aim for type safety and portabilityBy default, aim for type safety and portability

2525Stroustrup/ProgrammingStroustrup/Programming

Another simple computationAnother simple computation

// // inch to cm and cm to inch conversion:inch to cm and cm to inch conversion:

int main()int main()
{{

const double cm_per_inch = 2.54;const double cm_per_inch = 2.54;
int val;int val;
char unit;char unit;
while (cin >> val >> unit) {while (cin >> val >> unit) { // // keep reading keep reading

if (unit == 'i')if (unit == 'i') // // 'i' 'i' for inchfor inch
cout << val << "in == " << val*cm_per_inch << "cm\n";cout << val << "in == " << val*cm_per_inch << "cm\n";

else if (unit == 'c')else if (unit == 'c') // // 'c' 'c' for cmfor cm
cout << val << "cm == " << val/cm_per_inch << "in\n";cout << val << "cm == " << val/cm_per_inch << "in\n";

elseelse
return 0;return 0; // // terminate on a terminate on a ““bad unitbad unit””, e.g. , e.g. 'q' 'q'

}}
}}

2626Stroustrup/ProgrammingStroustrup/Programming

C++11 hintC++11 hint

 All language standards are updated occasionallyAll language standards are updated occasionally
 Often every 5 or 10 yearsOften every 5 or 10 years

 The latest standard has the most and the nicest featuresThe latest standard has the most and the nicest features
 Currently C++11Currently C++11

 The latest standard is not 100% supported by all compilersThe latest standard is not 100% supported by all compilers
 GCC (Linux) and Clang (Mac) are fineGCC (Linux) and Clang (Mac) are fine
 Microsoft C++ is OK (but still lacks important facilities)Microsoft C++ is OK (but still lacks important facilities)
 Other implementations (many) varyOther implementations (many) vary

Stroustrup/ProgrammingStroustrup/Programming 2727

C++11 HintC++11 Hint

 You can use the type of an initializer as the type of a variableYou can use the type of an initializer as the type of a variable
 auto x = 1;auto x = 1; // // 1 1 is an is an intint, so , so x x is an is an intint
 auto y = ′c′;auto y = ′c′; // ′// ′cc′′ is ais a char char, so , so y y is a is a charchar
 auto d = 1.2;auto d = 1.2; // // 1.2 1.2 is ais a double double, so , so d d is a is a doubledouble

 auto s = ″Howdy″;// auto s = ″Howdy″;// ″Howdy″ ″Howdy″ is a string literal of type is a string literal of type const char[]const char[]
// // so don’t do that until you know what it means!so don’t do that until you know what it means!

 auto sq = sqrt(2);auto sq = sqrt(2); // // sqsq is the right type for the result of is the right type for the result of sqrt(2)sqrt(2)
//// and you don’t have to remember what that isand you don’t have to remember what that is

Stroustrup/ProgrammingStroustrup/Programming 2828

The next lectureThe next lecture

 Will talk about expressions, statements, Will talk about expressions, statements,
debugging, simple error handling, and simple debugging, simple error handling, and simple
rules for program constructionrules for program construction

2929Stroustrup/ProgrammingStroustrup/Programming

