
Chapter 14Chapter 14
Graph class designGraph class design

Bjarne StroustrupBjarne Stroustrup

www.stroustrup.com/Programmingwww.stroustrup.com/Programming

AbstractAbstract

 We have discussed classes in previous lecturesWe have discussed classes in previous lectures
 Here, we discuss design of classesHere, we discuss design of classes

 Library design considerationsLibrary design considerations
 Class hierarchies (object-oriented programming)Class hierarchies (object-oriented programming)
 Data hiding Data hiding

22Stroustrup/ProgrammingStroustrup/Programming

IdealsIdeals

 Our ideal of program design is to represent the Our ideal of program design is to represent the
concepts of the application domain directly in code. concepts of the application domain directly in code.
 If you understand the application domain, you understand If you understand the application domain, you understand

the code, and the code, and vice versavice versa. For example:. For example:
 WindowWindow – a window as presented by the operating system – a window as presented by the operating system
 LineLine – a line as you see it on the screen – a line as you see it on the screen
 PointPoint – a coordinate point – a coordinate point
 ColorColor – as you see it on the screen – as you see it on the screen
 ShapeShape – what – what’’s common for all shapes in our Graph/GUI view of s common for all shapes in our Graph/GUI view of

the worldthe world
 The last example, The last example, ShapeShape, is different from the rest in , is different from the rest in

that it is a generalization.that it is a generalization.
 You canYou can’t make an object that’s “just a Shape”’t make an object that’s “just a Shape”

33Stroustrup/ProgrammingStroustrup/Programming

Logically identical operations have the Logically identical operations have the
same namesame name

 For every class,For every class,
 draw_lines()draw_lines() does the drawing does the drawing
 move(dx,dy)move(dx,dy) does the moving does the moving
 s.add(x)s.add(x) adds some adds some xx ((e.g.e.g., a point) to a shape , a point) to a shape ss..

 For every property For every property xx of a Shape, of a Shape,
 x()x() gives its current value and gives its current value and
 set_x()set_x() gives it a new value gives it a new value
 e.g.,e.g.,

Color c = s.color();Color c = s.color();

s.set_color(Color::blue);s.set_color(Color::blue);

44Stroustrup/ProgrammingStroustrup/Programming

Logically different operations haveLogically different operations have
different namesdifferent names

Lines ln;Lines ln;
Point p1(100,200);Point p1(100,200);
Point p2(200,300);Point p2(200,300);
ln.add(p1,p2);ln.add(p1,p2); // // add points to ln (make copies)add points to ln (make copies)
win.attach(ln);win.attach(ln); // // attach ln to windowattach ln to window

 Why not Why not win.add(ln)win.add(ln)??
 add()add() copies information; copies information; attach()attach() just creates a reference just creates a reference
 we can change a displayed object after attaching it, but not after adding itwe can change a displayed object after attaching it, but not after adding it

55

(100,200)
(200,300)

&ln ln:

win:
(100,200)

p1:

(200,300)
p2:

attach()

 add()

Stroustrup/ProgrammingStroustrup/Programming

Expose uniformlyExpose uniformly
 Data should be privateData should be private

 Data hiding – so it will not be changed inadvertentlyData hiding – so it will not be changed inadvertently
 Use Use private private data, and pairs of public access functions to get and set the data, and pairs of public access functions to get and set the

datadata
c.set_radius(12);c.set_radius(12); // // set radius to 12set radius to 12
c.set_radius(c.radius()*2);c.set_radius(c.radius()*2); // // double the radius (fine)double the radius (fine)
c.set_radius(-9);c.set_radius(-9); //// set_radius() could check for negative,set_radius() could check for negative,
//// but doesnbut doesn’’t yet t yet
double r = c.radius();double r = c.radius(); // // returns value of radiusreturns value of radius
c.radius = -9;c.radius = -9; // // error: radius is a function (good!)error: radius is a function (good!)
c.r = -9;c.r = -9; // // error: radius is private (good!)error: radius is private (good!)

 Our functions can be private or publicOur functions can be private or public
 Public for interfacePublic for interface
 Private for functions used only internally to a classPrivate for functions used only internally to a class

66Stroustrup/ProgrammingStroustrup/Programming

What does What does ““privateprivate”” buy us? buy us?

 We can change our implementation after releaseWe can change our implementation after release
 We donWe don’’t expose FLTK types used in representation to our userst expose FLTK types used in representation to our users

 We could replace FLTK with another library without affecting user codeWe could replace FLTK with another library without affecting user code
 We could provide checking in access functionsWe could provide checking in access functions

 But we havenBut we haven’’t done so systematically (later?)t done so systematically (later?)
 Functional interfaces can be nicer to read and useFunctional interfaces can be nicer to read and use

 E.g., E.g., s.add(x)s.add(x) rather than rather than s.points.push_back(x)s.points.push_back(x)
 We enforce immutability of shapeWe enforce immutability of shape

 Only color and style change; not the relative position of pointsOnly color and style change; not the relative position of points
 constconst member functions member functions

 The value of this The value of this ““encapsulationencapsulation”” varies with application domains varies with application domains
 Is often most valuableIs often most valuable
 Is the idealIs the ideal

 i.e., hide representation unless you have a good reason not toi.e., hide representation unless you have a good reason not to

77Stroustrup/ProgrammingStroustrup/Programming

““RegularRegular”” interfaces interfaces

Line ln(Point(100,200),Point(300,400));Line ln(Point(100,200),Point(300,400));
Mark m(Point(100,200), 'x');Mark m(Point(100,200), 'x'); // // display a single point as an 'x'display a single point as an 'x'
Circle c(Point(200,200),250);Circle c(Point(200,200),250);

//// Alternative (not supported):Alternative (not supported):
Line ln2(x1, y1, x2, y2);Line ln2(x1, y1, x2, y2); //// from (x1,y1) to (x2,y2)from (x1,y1) to (x2,y2)

//// How about? (not supported):How about? (not supported):
Rectangle s1(Point(Rectangle s1(Point(100100,,200200),),200200,,300300);); // // width==200 height==300width==200 height==300
Rectangle s2(Point(Rectangle s2(Point(100100,,200200),Point(),Point(200200,,300300)); //)); // width==100 height==100width==100 height==100

Rectangle s3(Rectangle s3(100100,,200200,,200200,,300300););// // is is 200200,,300300 a point or a width plus a a point or a width plus a
height?height?

88Stroustrup/ProgrammingStroustrup/Programming

A libraryA library

 A collection of classes and functions meant to be used togetherA collection of classes and functions meant to be used together
 As building blocks for applicationsAs building blocks for applications
 To build more such To build more such ““building blocksbuilding blocks””

 A good library models some aspect of a domain A good library models some aspect of a domain
 It doesnIt doesn’t try to do everything’t try to do everything
 Our library aims at simplicity and small size for graphing data and for Our library aims at simplicity and small size for graphing data and for

very simple GUI very simple GUI

 We canWe can’’t define each library class and function in isolationt define each library class and function in isolation
 A good library exhibits a uniform style (A good library exhibits a uniform style (““regularityregularity””))

99Stroustrup/ProgrammingStroustrup/Programming

Class ShapeClass Shape

 All our shapes are All our shapes are ““based onbased on”” the Shape class the Shape class
 E.g., a E.g., a PolygonPolygon is a kind of is a kind of ShapeShape

1010

Shape

 Polygon

 Text

 Open_polyline

EllipseCircle

 Marked_polyline Closed_polyline

 Line

 Mark

 Lines

 Marks

 Axis

 Function

 Rectangle

Image

Stroustrup/ProgrammingStroustrup/Programming

Class Shape Class Shape – is abstract– is abstract

 You can’t make a “plain” ShapeYou can’t make a “plain” Shape
protected:protected:

Shape();Shape(); // // protected to make class Shape abstractprotected to make class Shape abstract

For exampleFor example

Shape ss;Shape ss; //// error: cannot construct Shapeerror: cannot construct Shape

 Protected means Protected means “can only be used from this class or from “can only be used from this class or from
a derived class”a derived class”

 Instead, we use Shape as a base classInstead, we use Shape as a base class
struct Circle : Shape {struct Circle : Shape { // // “a Circle is a Shape”“a Circle is a Shape”

// // ……

}; };

1111Stroustrup/ProgrammingStroustrup/Programming

Class ShapeClass Shape
 ShapeShape ties our graphics objects to ties our graphics objects to ““the screenthe screen””

 WindowWindow ““knows aboutknows about”” ShapeShapess
 All our graphics objects are kinds of All our graphics objects are kinds of ShapeShapess

 ShapeShape is the class that deals with color and style is the class that deals with color and style
 It has It has ColorColor and and Line_styleLine_style members members

 ShapeShape can hold can hold PointPoints s
 ShapeShape has a basic notion of how to draw lines has a basic notion of how to draw lines

 It just connects its It just connects its PointPointss

1212Stroustrup/ProgrammingStroustrup/Programming

Class ShapeClass Shape

 Shape deals with color and styleShape deals with color and style
 It keeps its data private and provides access functionsIt keeps its data private and provides access functions

void set_color(Color col);void set_color(Color col);

Color color() const;Color color() const;

void set_style(Line_style sty);void set_style(Line_style sty);

Line_style style() const;Line_style style() const;

// // ……

private:private:

// // ……

Color line_color;Color line_color;

Line_style ls;Line_style ls;

1313Stroustrup/ProgrammingStroustrup/Programming

Class ShapeClass Shape

 ShapeShape stores stores PointPointss
 It keeps its data private and provides access functionsIt keeps its data private and provides access functions

Point point(int i) const;Point point(int i) const; // // read-only access to pointsread-only access to points

int number_of_points() const;int number_of_points() const;

// // ……

protected:protected:

 void add(Point p);void add(Point p); // // add p to pointsadd p to points

 // // ……

private:private:

vector<Point> points;vector<Point> points; // // not used by all shapesnot used by all shapes

1414Stroustrup/ProgrammingStroustrup/Programming

Class ShapeClass Shape
 ShapeShape itself can access points directly: itself can access points directly:

void Shape::draw_lines() constvoid Shape::draw_lines() const // // draw connecting linesdraw connecting lines
{{

if (color().visible() && 1<points.size())if (color().visible() && 1<points.size())
for (int i=1; i<points.size(); ++i)for (int i=1; i<points.size(); ++i)
fl_line(points[i-1].x,points[i-1].y,points[i].x,points[i].y);fl_line(points[i-1].x,points[i-1].y,points[i].x,points[i].y);

}}

 Others (incl. derived classes) use Others (incl. derived classes) use point()point() and and number_of_points()number_of_points()
 why?why?

void Lines::draw_lines() constvoid Lines::draw_lines() const // // draw a line for each pair of pointsdraw a line for each pair of points
{{

for (int i=1; i<number_of_points(); i+=2)for (int i=1; i<number_of_points(); i+=2)
fl_line(point(i-1).x, point(i-1).y, point(i).x, point(i).y);fl_line(point(i-1).x, point(i-1).y, point(i).x, point(i).y);

}}

1515Stroustrup/ProgrammingStroustrup/Programming

Class Shape Class Shape (basic idea of drawing)(basic idea of drawing)

void Shape::draw() constvoid Shape::draw() const
//// The real heart of class Shape (and of our graphics interface system)The real heart of class Shape (and of our graphics interface system)
//// called by Window (only)called by Window (only)

{{
// // … save old color and style …… save old color and style …
// // … set color and style for this shape…… set color and style for this shape…

//// … draw what is specific for this particular shape … … draw what is specific for this particular shape …
//// … Note: this varies dramatically depending on the type of shape … … Note: this varies dramatically depending on the type of shape …
//// … e.g. Text, Circle, Closed_polyline … e.g. Text, Circle, Closed_polyline

// … // … reset the color and style to their old values …reset the color and style to their old values …
}}

1616Stroustrup/ProgrammingStroustrup/Programming

Class Shape Class Shape (implementation of drawing)(implementation of drawing)

void Shape::draw() constvoid Shape::draw() const
//// The real heart of class Shape (and of our graphics interface system)The real heart of class Shape (and of our graphics interface system)
//// called by Window (only)called by Window (only)

{{
Fl_Color oldc = fl_color();Fl_Color oldc = fl_color(); // // save old colorsave old color
// // there is no good portable way of retrieving the current style (sigh!)there is no good portable way of retrieving the current style (sigh!)
fl_color(line_color.as_int());fl_color(line_color.as_int()); // // set color and styleset color and style
fl_line_style(ls.style(),ls.width());fl_line_style(ls.style(),ls.width());

draw_lines();draw_lines(); // // call the appropriate draw_lines() call the appropriate draw_lines()
//// a a ““virtual callvirtual call””
//// here is what is specific for a here is what is specific for a ““derived classderived class”” is done is done

fl_color(oldc);fl_color(oldc); // // reset color to previous reset color to previous
fl_line_style(0);fl_line_style(0); // // (re)set style to default(re)set style to default

}}

1717

Note!

Stroustrup/ProgrammingStroustrup/Programming

Class shapeClass shape
 In class In class ShapeShape

virtual void draw_lines() const; // virtual void draw_lines() const; // draw the appropriate linesdraw the appropriate lines

 In class In class CircleCircle
void draw_lines() const { /* void draw_lines() const { /* draw the Circledraw the Circle */ } */ }

 In class In class TextText
 void draw_lines() const { /* void draw_lines() const { /* draw the Text draw the Text */ }*/ }

 CircleCircle, , TextText, and other classes, and other classes
 ““Derive fromDerive from”” ShapeShape
 May May ““overrideoverride”” draw_lines()draw_lines()

1818Stroustrup/ProgrammingStroustrup/Programming

class Shape {class Shape { // // deals with color and style, and holds a sequence of linesdeals with color and style, and holds a sequence of lines
public:public:

void draw() const;void draw() const; // // deal with color and call draw_lines()deal with color and call draw_lines()
virtual void move(int dx, int dy); virtual void move(int dx, int dy); // // move the shape +=dx and +=dymove the shape +=dx and +=dy

void set_color(Color col);void set_color(Color col); // // color accesscolor access
int color() const;int color() const;
// // … style and fill_color access functions …… style and fill_color access functions …

Point point(int i) const;Point point(int i) const; // // (read-only) (read-only) access to pointsaccess to points
int number_of_points() const;int number_of_points() const;

protected:protected:
Shape();Shape(); // // protected to make class Shape abstractprotected to make class Shape abstract
void add(Point p);void add(Point p); // // add p to pointsadd p to points
virtual void draw_lines() const; virtual void draw_lines() const; // // simply draw the appropriate linessimply draw the appropriate lines

private:private:
vector<Point> points;vector<Point> points; // // not used by all shapesnot used by all shapes
Color lcolor;Color lcolor; // // line colorline color
Line_style ls;Line_style ls; // // line styleline style
Color fcolor;Color fcolor; // // fill colorfill color

//// … prevent copying … … prevent copying …
};};

1919Stroustrup/ProgrammingStroustrup/Programming

Display model completedDisplay model completed

2020

Circle
draw_lines()

Text
draw_lines()

Window

Display
Engine

draw()

draw()

draw()

our code
make objects

wait_for_button()

Shape

Shape
draw_lines()

draw_lines()

attach()

Stroustrup/ProgrammingStroustrup/Programming

Language mechanismsLanguage mechanisms

 Most popular definition of object-oriented programming: Most popular definition of object-oriented programming:

 OOP == inheritance + polymorphism + encapsulationOOP == inheritance + polymorphism + encapsulation

 Base and derived classesBase and derived classes // // inheritanceinheritance
 struct Circle : Shape { … };struct Circle : Shape { … };
 Also called Also called ““inheritanceinheritance””

 Virtual functionsVirtual functions // // polymorphismpolymorphism
 virtual void draw_lines() const;virtual void draw_lines() const;
 Also called Also called ““run-time polymorphismrun-time polymorphism”” or or ““dynamic dispatchdynamic dispatch””

 Private and protectedPrivate and protected // // encapsulationencapsulation
 protected: Shape();protected: Shape();
 private: vector<Point> points;private: vector<Point> points;

2121Stroustrup/ProgrammingStroustrup/Programming

A simple class hierarchyA simple class hierarchy

 We chose to use a simple (and mostly shallow) class hierarchyWe chose to use a simple (and mostly shallow) class hierarchy
 Based on ShapeBased on Shape

2222

Shape

 Polygon

 Text

 Open_polyline

EllipseCircle

 Marked_polyline Closed_polyline

 Line

 Mark

 Lines

 Marks

 Axis

 Function

 Rectangle

Image

Stroustrup/ProgrammingStroustrup/Programming

Object layoutObject layout

 The data members of a derived class are simply added at the end of its base The data members of a derived class are simply added at the end of its base
class (a Circle is a Shape with a radius)class (a Circle is a Shape with a radius)

2323

points
line_color
ls

Shape:

points

line_color
ls

r

Circle:

Stroustrup/ProgrammingStroustrup/Programming

Benefits of inheritanceBenefits of inheritance

 Interface inheritanceInterface inheritance
 A function expecting a shape (a A function expecting a shape (a Shape&Shape&) can accept) can accept

any object of a class derived from Shape.any object of a class derived from Shape.
 Simplifies useSimplifies use

 sometimes dramaticallysometimes dramatically
 We can add classes derived from Shape to a program We can add classes derived from Shape to a program

without rewriting user codewithout rewriting user code
 Adding without touching old code is one of the Adding without touching old code is one of the ““holy grailsholy grails””

of programmingof programming
 Implementation inheritanceImplementation inheritance

 Simplifies implementation of derived classesSimplifies implementation of derived classes
 Common functionality can be provided in one placeCommon functionality can be provided in one place
 Changes can be done in one place and have universal effectChanges can be done in one place and have universal effect

 Another Another ““holy grailholy grail””

2424Stroustrup/ProgrammingStroustrup/Programming

Access modelAccess model

 A member (data, function, or type member) or a base can beA member (data, function, or type member) or a base can be
 Private, protected, or publicPrivate, protected, or public

2525Stroustrup/ProgrammingStroustrup/Programming

Pure virtual functionsPure virtual functions
 Often, a function in an interface canOften, a function in an interface can’’t be implementedt be implemented

 E.g. the data needed is E.g. the data needed is ““hiddenhidden”” in the derived class in the derived class
 We must ensure that a derived class implements that functionWe must ensure that a derived class implements that function
 Make it a Make it a ““pure virtual functionpure virtual function”” ((=0=0))

 This is how we define truly abstract interfaces (This is how we define truly abstract interfaces (““pure interfacespure interfaces””))

struct Engine {struct Engine { // // interface to electric motorsinterface to electric motors

// // no datano data

// // (usually) no constructor(usually) no constructor

virtual double increase(int i) =0;virtual double increase(int i) =0; // // must be defined in a derived classmust be defined in a derived class

// // ……

virtual ~Engine();virtual ~Engine(); // // (usually) a virtual destructor(usually) a virtual destructor

};};

Engine eee;Engine eee; // // error: Collection is an abstract classerror: Collection is an abstract class

Stroustrup/ProgrammingStroustrup/Programming 2626

Pure virtual functionsPure virtual functions
 A pure interface can then be used as a base classA pure interface can then be used as a base class

 Constructors and destructors will be describe d in detail in chapters 17-19Constructors and destructors will be describe d in detail in chapters 17-19

Class M123 : public Engine {Class M123 : public Engine { // // engine model M123engine model M123

// // representationrepresentation

public:public:

M123();M123(); // // construtor: initialization, acquire resourcesconstrutor: initialization, acquire resources

double increase(int i) { /* double increase(int i) { /* …… */ } */ } // // overrides Engine ::increaseoverrides Engine ::increase

// // ……

~M123();~M123(); // // destructor: cleanup, release resourcesdestructor: cleanup, release resources

};};

M123 window3_control;M123 window3_control; // // OK

Stroustrup/ProgrammingStroustrup/Programming 2727

Technicality: CopyingTechnicality: Copying
 If you donIf you don’’t know how to copy an object, prevent copyingt know how to copy an object, prevent copying

 Abstract classes typically should not be copiedAbstract classes typically should not be copied

class Shape {class Shape {

// // ……

Shape(const Shape&) = delete;Shape(const Shape&) = delete; // // dondon’t ’t ““copy constructcopy construct””

Shape& operator=(const Shape&) = delete;Shape& operator=(const Shape&) = delete; // // dondon’t ’t ““copy assigncopy assign””

};};

void f(Shape& a)void f(Shape& a)

{{

Shape s2 = a;Shape s2 = a; // // error: no Shape “copy constructor” (iterror: no Shape “copy constructor” (it’s deleted)’s deleted)

a = s2;a = s2; // // error: no Shape “copy assignment” (iterror: no Shape “copy assignment” (it’s deleted)’s deleted)

}}

Stroustrup/ProgrammingStroustrup/Programming 2828

Prevent copying C++98 stylePrevent copying C++98 style
 If you donIf you don’’t know how to copy an object, prevent copyingt know how to copy an object, prevent copying

 Abstract classes typically should not be copiedAbstract classes typically should not be copied

class Shape {class Shape {

// // ……

private:private:

Shape(const Shape&);Shape(const Shape&); // // dondon’’t t ““copy constructcopy construct””

Shape& operator=(const Shape&);Shape& operator=(const Shape&); // // dondon’’t t ““copy assigncopy assign””

};};

void f(Shape& a)void f(Shape& a)

{{

Shape s2 = a;Shape s2 = a; // // error: no Shape “copy constructor” (iterror: no Shape “copy constructor” (it’’s private)s private)

a = s2;a = s2; // // error: no Shape “copy assignment” (iterror: no Shape “copy assignment” (it’’s private)s private)

}}

Stroustrup/ProgrammingStroustrup/Programming 2929

Technicality: OverridingTechnicality: Overriding
 To override a virtual function, you needTo override a virtual function, you need

 A virtual functionA virtual function
 Exactly the same nameExactly the same name
 Exactly the same typeExactly the same type

struct B {struct B {

void f1();void f1(); // // not virtualnot virtual

virtual void f2(char);virtual void f2(char);

virtual void f3(char) const;virtual void f3(char) const;

virtual void f4(int);virtual void f4(int);

};};

Stroustrup/ProgrammingStroustrup/Programming 3030

struct D : B {struct D : B {

void f1();void f1(); // // doesndoesn’’t overridet override

void f2(int); void f2(int); // // doesndoesn’’t overridet override

void f3(char); void f3(char); // // doesndoesn’’t overridet override

void f4(int);void f4(int); // // overridesoverrides

};};

Technicality: OverridingTechnicality: Overriding
 To override a virtual function, you needTo override a virtual function, you need

 A virtual functionA virtual function
 Exactly the same nameExactly the same name
 Exactly the same typeExactly the same type

struct B {struct B {

void f1();void f1(); // // not virtualnot virtual

virtual void f2(char);virtual void f2(char);

virtual void f3(char) const;virtual void f3(char) const;

virtual void f4(int);virtual void f4(int);

};};

Stroustrup/ProgrammingStroustrup/Programming 3131

struct D : B {struct D : B {

void f1() override;void f1() override; // // errorerror

void f2(int) override; void f2(int) override; // // errorerror

void f3(char) override; void f3(char) override; // // errorerror

void f4(int) override;void f4(int) override; // // OKOK

};};

Technicality: OverridingTechnicality: Overriding
 To invoke a virtual function, you needTo invoke a virtual function, you need

 A reference, orA reference, or
 A pointerA pointer

D d1;D d1;

B& bref = d1; B& bref = d1; // d1 // d1 is a is a DD, and , and a a D D is a is a BB, so , so d1 d1 is a is a BB

bref.f4(2); bref.f4(2); // // calls calls D::f4(2) D::f4(2) onon d1 d1 since since bref bref names a names a DD

// // pointers are in chapter 17pointers are in chapter 17

B *bptr = &d1; B *bptr = &d1; // d1 // d1 is a is a DD, and , and a a D D is a is a BB, so , so d1 d1 is a is a BB

bptr->f4(2); bptr->f4(2); // // calls calls D::f4(2) D::f4(2) onon d1 d1 since since bptr bptr points to a points to a DD

Stroustrup/ProgrammingStroustrup/Programming 3232

Next lectureNext lecture
 Graphing functions and dataGraphing functions and data

3333Stroustrup/ProgrammingStroustrup/Programming

