Chapter 14
Graph class design

Bjarne Stroustrup

www.stroustrup.com/Programming

Ab StraCt Smarter computing.

" We have discussed classes in previous lectures

" Here, we discuss design of classes
" [ibrary design considerations

® (Class hierarchies (object-oriented programming)
" Data hiding

Stroustrup/Programming 2

VR

I de al S Smarter computing.

® QOur 1deal of program design 1s to represent the
concepts of the application domain directly i code.

" [f you understand the application domain, you understand
the code, and vice versa. For example:
" Window — a window as presented by the operating system
" Line — a line as you see it on the screen
" Point — a coordinate point
" Color — as you see it on the screen

" Shape — what’s common for all shapes in our Graph/GUI view of
the world

" The last example, Shape, 1s different from the rest in
that it 1S a generalization.

" You can’t make an object that’s “just a Shape™

Stroustrup/Programming 3

Logically identical operations have the ™
same name

" For every class,
" draw_lines() does the drawing
" move(dx,dy) does the moving

" s.add(x) adds some x (e.g., a point) to a shape s.

" For every property x of a Shape,
" x() gives its current value and
" set x() gives it a new value
.,
Color ¢ = s.color();
s.set_color(Color::blue);

Stroustrup/Programming 4

VR

Smarter computing.

Logically different operations have
different names

Lines In;

Point p1(100,200);

Point p2(200,300);

In.add(p1,p2); // add points to In (make copies)
win.attach(In); /[attach In to window

" Why not win.add(In)?
" add() copies information; attach() just creates a reference
" we can change a displayed object after attaching it, but not after adding it

attach() ;
Wwin. >

(100,200)

In: &In

(200,300)

add() (100,200)
(200,300)

Stroustrup/Programming)

5 VR
Expose uniformly

" Data should be private
® Data hiding — so it will not be changed inadvertently

" [Use private data, and pairs of public access functions to get and set the
data

c.set_radius(12); // set radius to 12
c.set_radius(c.radius()*2); // double the radius (fine)

c.set_radius(-9); /[set radius() could check for negative,
/I but doesn'’t yet

double r = c.radius(); /[veturns value of radius

c.radius = -9; [error: vadius is a function (good!)

c.r =-9; /[error: radius is private (good!)

" Our functions can be private or public
" Public for interface
" Private for functions used only internally to a class

Stroustrup/Programming 6

VR
What does “private” buy us? =

We can change our implementation after release

We don’t expose FLLTK types used in representation to our users
" We could replace FLTK with another library without affecting user code

We could provide checking in access functions
" But we haven’t done so systematically (later?)

Functional interfaces can be nicer to read and use
" E.g., s.add(x) rather than s.points.push_back(x)

We enforce immutability of shape
" Only color and style change; not the relative position of points
" const member functions
The value of this “encapsulation” varies with application domains

® [s often most valuable

" [s the ideal
" 1.e., hide representation unless you have a good reason not to

Stroustrup/Programming 7

7 \
M gular” interfaces

Line In(Point(100,200),Point(300,400));
Mark m(Point(100,200), 'x"); Il display a single point as an 'x'
Circle ¢c(Point(200,200),250);

/[Alternative (not supported):
Line In2(x1, y1, x2, y2); Il from (x1,y1) to (x2,y2)

/[How about? (not supported):
Rectangle s1(Point(100,200),200,500); Il width==200 height==300
Rectangle s2(Point(100,200),Point(200,500)); [/ width==100 height==100

Rectangle s3(100,200,200,500)s// is } a point or a width plus a
height?

Stroustrup/Programming 8

VR

A library

" A collection of classes and functions meant to be used together
" As building blocks for applications
" To build more such “building blocks”

" A good library models some aspect of a domain
" [t doesn’t try to do everything

" Qur library aims at simplicity and small size for graphing data and for
very simple GUI

" We can’t define each library class and function in 1solation
" A good library exhibits a uniform style (“regularity’)

Stroustrup/Programming 9

VR

Class Shape

" All our shapes are “based on” the Shape class
" E.g.,aPolygon is a kind of Shape

Shape
Circle Ellipse Text Line
Open_polyline
Image
Fogls Lines
Function
Marked polyline Closed_polyline Rectangle
Marks
Polygon

Mark Stroustrup/Programming 10

” \
T R

" You can’t make a “plain” Shape

protected:
Shape(); /I protected to make class Shape abstract

For example
Shape ss; /[error.: cannot construct Shape
" Protected means “can only be used from this class or from
a derived class”

" Instead, we use Shape as a base class

struct Circle : Shape { // “a Circle is a Shape”
IEH

¥5

Stroustrup/Programming 11

VR

Class Shape

Shape ties our graphics objects to “the screen”
" Window “knows about” Shapes
® All our graphics objects are kinds of Shapes

Shape is the class that deals with color and style

® |t has Color and Line_style members
Shape can hold Points
Shape has a basic notion of how to draw lines

" |t just connects its Points

Stroustrup/Programming 12

VR

Class Shape

® Shape deals with color and style

" [t keeps 1ts data private and provides access functions

void set_color(Color col);
Color color() const;
void set_style(Line_style sty);
Line_style style() const;
Vi E
private:
/e
Color line _color;
Line_style Is;

Stroustrup/Programming 13

VR

Class Shape

" Shape stores Points

" [t keeps 1ts data private and provides access functions

Point point(int i) const; /[read-only access to points
int number of points() const;
/158
protected:
void add(Point p); /I add p to points
£
private:

vector<Point> points; Il not used by all shapes

Stroustrup/Programming 14

VR

Class Shape

" Shape itself can access points directly:

void Shape::draw_lines() const /I draw connecting lines

t
if (color().visible() && 1<points.size())

for (int i=1; i<points.size(); ++i)
fl_line(points[i-1].x,points[i-1].y,points[i].x,points[i].y);
§

" Others (incl. derived classes) use point() and number_of_points()
" why?

void Lines::draw_lines() const /[draw a line for each pair of points

{
for (int i=1; i<number of points(); i+=2)
fl_line(point(i-1).x, point(i-1).y, point(i).x, point(i).y);
5

Stroustrup/Programming 15

” \
Class Shape (basic idea of drawing) sronsuns

void Shape::draw() const

/I The real heart of class Shape (and of our graphics interface system)
/I called by Window (only)

{
/I ... save old color and style ...
/I ... set color and style for this shape...
/[... draw what is specific for this particular shape. ...
/[... Note: this varies dramatically depending on the type of shape ...
/... e.g. Text, Circle, Closed polyline
/] ... reset the color and style to their old values. ...
;

Stroustrup/Programming 16

7

7

7 \
Class Shape (implementation of drawing)

void Shape::draw() const

d

/I The real heart of class Shape (and of our graphics interface system)
/] called by Window (only)

F1_Color oldc = f1_color(); // save old color

/] there is no good portable way of retrieving the current style (sigh!)
fl_color(line _color.as int()); // set color and style
fl_line_style(ls.style(),ls.width());

draw_lines(); // call the appropriate draw_lines()
/l'a “virtual call”

_-" Il here is what is specific for a “derived class” is done

j

fl_color(oldc); /I reset color to previous
fl_line_style(0); /I (re)set style to default

Stroustrup/Programming 17

VR

Class shape

In class Shape

virtual void draw_lines() const; // draw the appropriate lines

In class Circle

void draw_lines() const { /* draw the Circle */ '}

In class Text

" void draw_lines() const { /* draw the Text */ }

Circle, Text, and other classes
" “Derive from™ Shape

" May “override” draw_lines()

Stroustrup/Programming 18

VR

class Shape { Il deals with color and style, and holds a sequence of lines |
public: Smarter computing.
void draw() const; /I deal with color and call draw _lines()

virtual void move(int dx, int dy); // move the shape +=dx and +=dy

void set_color(Color col); /[color access
int color() const;
/... style and fill_color access functions ...

Point point(int i) const; // (read-only) access to points
int number_of points() const;

protected:
Shape(); /[protected to make class Shape abstract
void add(Point p); /I add p to points

virtual void draw_lines() const; // simply draw the appropriate lines
private:

vector<Point> points; /[not used by all shapes
Color Icolor; /[line color

Line style Is; /I line style

Color fcolor; /I fill color

/[... prevent copying ...
3

Stroustrup/Programming 19

VR

Smarter computing.

Display model completed
draw_lines()

Circle draw()
draw_lines()
draw/()
. Shape d
draw _lines() - | raw() attach()

Text

draw_lines()

wait_for button()

our code

make objects

Stroustrup/Programming 20

[Language mechanisms

Most popular definition of object-oriented programming:

OOP == inheritance + polymorphism + encapsulation

Base and derived classes // inheritance
® struct Circle : Shape { ... };
® Also called “inheritance”

Virtual functions // polymorphism
" virtual void draw_lines() const;
" Also called “run-time polymorphism’ or “dynamic dispatch™

Private and protected /- encapsulation
" protected: Shape();
" private: vector<Point> points;

Stroustrup/Programming

VR

Smarter computing.

21

” \
R

" We chose to use a simple (and mostly shallow) class hierarchy
" Based on Shape

Shape
Circle Ellipse Text Line
Open_polyline
' Image
Fogls Lines
Function
Marked polyline Closed_polyline Rectangle
Marks

Polygon

Mark Stroustrup/Programming 22

7 \
Object layout

" The data members of a derived class are simply added at the end of its base
class (a Circle is a Shape with a radius)

Shape:
points

line_color
Is

Circle:

points

line_color
Is

r
Stroustrup/Programming 23

7 \
T

" Interface inheritance
" A function expecting a shape (a Shape&) can accept
any object of a class derived from Shape.
" Simplifies use
" sometimes dramatically

® We can add classes derived from Shape to a program
without rewriting user code
" Adding without touching old code is one of the “holy grails”
of programming

" Implementation inheritance

" Simplifies implementation of derived classes
" Common functionality can be provided in one place

" Changes can be done in one place and have universal effect
" Another “holy grail”

Stroustrup/Programming 24

7 \
Access model

All users
Derived class’s members

Class’s own members

' Protected members

Private members

" A member (data, function, or type member) or a base can be

" Private, protected, or public

Stroustrup/Programming 25

7 \
Pure virtual functions ==

" Often, a function in an interface can’t be implemented
" E.g. the data needed is “hidden” in the derived class
" We must ensure that a derived class implements that function

" Make it a “pure virtual function” (=0)

" This is how we define truly abstract interfaces (“pure interfaces™)

struct Engine { /[interface to electric motors
// no data
Il (usually) no constructor
virtual double increase(int i) =0; // must be defined in a derived class
1ot
virtual ~Engine(); // (usually) a virtual destructor
3

Engine eee; // error. Collection is an abstract class

Stroustrup/Programming 26

7 \
Pure virtual functions ==

" A pure mterface can then be used as a base class

" Constructors and destructors will be describe d in detail in chapters 17-19

Class M123 : public Engine {// engine model M123
/[representation
public:
M123(); // construtor: initialization, acquire resources
double increase(int i) { /* ... ¥/} /] overrides Engine ..increase
.

~M123(); // destructor: cleanup, release resources

3
M123 window3_control; /I OK

Stroustrup/Programming 27

VR

Technicality: Copying =

" [f you don’t know how to copy an object, prevent copying
" Abstract classes typically should not be copied

class Shape {
i S
Shape(const Shape&) = delete; /[don’t “copy construct”
Shape& operator=(const Shape&) = delete; // don 't “copy assign”

5

void f(Shape& a)

{
Shape s2 = a; /[error.: no Shape “copy constructor” (it’s deleted)
a=s2; /[error: no Shape “copy assignment” (it’s deleted)

j

Stroustrup/Programming 28

VR
Prevent copying C++98 style

" [f you don’t know how to copy an object, prevent copying
" Abstract classes typically should not be copied

class Shape {
il

private:
Shape(const Shape&); /[don’t “‘copy construct”
Shape& operator=(const Shape&);// don’t “copy assign”

3

void f(Shape& a)

d
Shape s2 = a; /I error: no Shape “copy constructor” (it’s private)
a=s82; [/ error: no Shape “copy assignment” (it’s private)

§

Stroustrup/Programming AY)

7 \
Technicality: Overriding =

® To override a virtual function, you need
" A virtual function
" Exactly the same name

" Exactly the same type

struct B {
void f1(); // not virtual
virtual void f2(char);
virtual void f3(char) const;

virtual void f4(int); struct D : B {
Y void f1(); // doesn 't override
void f2(int); Il doesn’t override
void f3(char); /[doesn’t override
void f4(int); /] overrides
3

Stroustrup/Programming 30

7 \
Technicality: Overriding =

® To override a virtual function, you need
" A virtual function
" Exactly the same name

" Exactly the same type

struct B {
void f1(); // not virtual
virtual void f2(char);
virtual void f3(char) const;
virtual void f4(int); struct D : B {
1¢ void f1() override;// error

void f2(int) override; /I error
void f3(char) override; /I error
void f4(int) override; /I OK

15

Stroustrup/Programming 31

7 \
Technicality: Overriding =

" To invoke a virtual function, you need

® A reference, or

" A pointer

D di;

B& bref =dl1; /[dlisa D, andaDisaB, sodlisaB
bref.f4(2); /I calls D::14(2) on d1 since bref names a D

/I pointers are in chapter 17
B *bptr = &d1; //dlisaD, andaDisaB, sodlisaB
bptr->{4(2); /I calls D::4(2) on d1 since bptr points to a D

Stroustrup/Programming 32

Next lecture

® Graphing functions and data

Stroustrup/Programming

33

