Chapter 13
Graphics classes

Bjarne Stroustrup

www.stroustrup.com/Programming

Ab StraCt Smarter computing.

" Chapter 12 demonstrated how to create simple windows and
display basic shapes: rectangle, circle, triangle, and ellipse. It
showed how to manipulate such shapes: change colors and line
style, add text, etc.

" Chapter 13 shows how these shapes and operations are
implemented, and shows a few more examples. In Chapter 12,
we were basically tool users; here we become tool builders.

Stroustrup/Programming 2

] ” \
Overview

® Graphing
" Model
® (Code organization

" Interface classes
® Point

Line

Lines

Grid

Open Polylines

Closed Polylines

Color

Text

Unnamed' objects

Stroustrup/Programming 3

VR

Display model

Open_polyline

Display

draw .
Engine
“window”’

raw()

attach()

attach()

Rectangle

Objects (such as graphs) are “attached to” (“placed in””) a window.

The “display engine” invokes display commands (such as “draw line
from x to y”’) for the objects in a window

Objects such as Rectangle add vectors of lines to the window to draw

Stroustrup/Programming 4

7\
Code organization

struct Point { ... };

/I Graphing interface: // window interface: /I GUI interface:
struct Shape { ... }; class Window {...}; struct In_box { ... };

Graph code :
Window code

#include "Graph.h"

#include "Window.h"
int main() { ...} GUI code

Stroustrup/Programming

VR

Source files
Header

" File that contains interface information (declarations)
" #include in user and implementer

.cpp (“code file” / “implementation file”)

" File that contains code implementing interfaces defined in headers
and/or uses such interfaces

® #includes headers

Read the Graph.h header
" And later the Graph.cpp implementation file

Don’t read the Window.h header or the Window.cpp
implementation file

" Naturally, some of you will take a peek
" Beware: heavy use of yet unexplained C++ features

Stroustrup/Programming 6

\ VR
Design note

" The 1deal of program design 1s to represent concepts directly
in code

" We take this ideal very seriously

" For example:
" Window — a window as we see it on the screen
" Will look different on different operating systems (not our business)
" Line — a line as you see it in a window on the screen
" Point — a coordinate point

® Shape — what’s common to shapes
" (imperfectly explained for now; all details in Chapter 14)
" Color — as you see it on the screen

Stroustrup/Programming 7

. ” \
Point

namespace Graph _lib // our graphics interface is in Graph_lib

{

struct Point /[a Point is simply a pair of ints (the coordinates)
d

int X, y;

Point(int xx, int yy) : x(xx), y(yy) { }
15 /I Note the ;'

Stroustrup/Programming 8

°
I ,1| le Smarter computing.

struct Shape {
/I hold lines represented as pairs of points
/I knows how to display lines

$3
struct Line : Shape /['a Line is a Shape defined by just two Points
d
Line(Point p1, Point p2);
$3
Line::Line(Point p1, Point p2) // construct a line from pl to p2
d
add(pl); Il add pl to this shape (add() is provided by Shape)
add(p2); /[add p2 to this shape
J

Stroustrup/Programming 9

: VR
Line example

/I draw two lines.
using namespace Graph_lib;

Simple window win(Point(100,100),600,400,"Canvas'); // make a window

Line horizontal(Point(100,100),Point(200,100)); // make a horizontal line
Line vertical(Point(150,50),Point(150,150)); /I make a vertical line

win.attach(horizontal); // attach the lines to the window
win.attach(vertical);

win.wait_for button(); // Display!

Stroustrup/Programming 10

: VR
Line example

_[o[x]

W two lines

Google Earth

&:

SnagIt 9

5

‘ThinkVantage
Productivity, Center

MinGW-5.1.4

M

MSYS

3

My Bluetooth:
Places

MTSEn v CS6OD%ROA GG [Dmhena [@g,_g_

Stroustrup/Programming 11

7 \
Line example

" Individual lines are independent

horizontal.set_color(Color::red);
vertical.set_color(Color::green);

Stroustrup/Programming 12

! ” \
[.1nes

struct Lines : Shape { // a Lines object is a set of lines
Il We use Lines when we want to manipulate
/I all the lines as one shape, e.g. move them all
/I together with one move statement
void add(Point p1, Point p2); // add line from pl to p2
void draw_lines() const; /I 'to be called by Window to draw Lines

¢

" Terminology:
" Lines “is derived from” Shape
® Lines “inherits from” Shape
" Lines “is a kind of”” Shape
® Shape “is the base” of Lines
" This 1s the key to what 1s called “object-oriented programming”
" We’ll get back to this in Chapter 14

Stroustrup/Programming 13

1 ” \
Lines Example

Lines x;
x.add(Point(100,100), Point(200,100)); // horizontal line
x.add(Point(150,50), Point(150,150)); /I vertical line

win.attach(x); /[attach Lines object x to Window win

win.wait_for button(); // Draw!

Stroustrup/Programming 14

VRN
Lines example

ri lines: +

" Looks exactly like the two Lines example

Stroustrup/Programming 15

] . 7 \
Implementation: Lines

void Lines::add(Point p1, Point p2) Il use Shape’s add()
d

Shape::add(p1);

Shape::add(p2);
§

void Lines::draw_lines() const // to somehow be called from Shape

d
for (int i=1; i<number of points(); i+=2)
fl_line(point(i-1).x, point(i-1).y, point(i).x, point(i).y);
j

" Note

" f] line is a basic line drawing function from FLTK
" FLTK 1s used in the implementation, not in the interface to our classes
" We could replace FLTK with another graphics library

Stroustrup/Programming 16

, 7\
Draw Grid

(Why bother with Lines when we have Line?)

/I A Lines object may hold many related lines
/[Here we construct a grid.

int x_size = win.x_max();
inty size = win.y max();

int x_grid = 80; Il make cells 80 pixels wide
inty grid = 40; Il make cells 40 pixels high
Lines grid;

for (int x=x_grid; x<x_size; x+=x_grid) // veritcal lines
grid.add(Point(x,0),Point(x,y_size));

for (int y =y_grid; y<y_size; y+=y_grid) // horizontal lines
grid.add(Point(0,y),Point(x_size,y));

win.attach(grid); // attach our grid to our window (note grid is one object)

Stroustrup/Programming 17

.
Grl d Smarter computing.

* Oops! Last column is narrow, there's a grid line on top of
the Next button, etc.—tweaking required (as usual)

Stroustrup/Programming 18

” \
Color

struct Color { // Map FLTK colors and scope them,

/I deal with visibility/transparency
enum Color_type { red=FL._RED, blue=FL. BLUE, /* ... */ };

enum Transparency { invisible=0, visible=255 }; // also called Alpha

Color(Color_type cc) :c(F1_Color(cc)), v(visible) { }
Color(int cc) :c(F1_Color(cc)), v(visible) { }
Color(Color_type cc, Transparency t) :c(F1_Color(cc)), v(t) { §

int as_int() const { return c; }

Transparency visibility() { return v; }

void set_visibility(Transparency t) { v=¢t; }
private:

F1_Color c;

char v;

¥5

Stroustrup/Programming 19

Draw red grid

grid.set_color(Color::red);

Stroustrup/Programming 20

. 7 \
Line_style

struct Line_style {
enum Line style type {

solid=FL._ SOLID, /] ~==-—--
dash=FL._DASH, /f----
dot=FL_DOT, I/ -
dashdot=FL. DASHDOT, /- -.

dashdotdot=FL. DASHDOTDOT, //-..-.
55
Line_style(Line_style type ss) :s(ss), w(0) { }
Line_style(Line_style type Ist, int ww) :s(Ist), w(ww) { }
Line_style(int ss) :s(ss), w(0) { }

int width() const { return w; }

int style() const { return s; ;
private:

int s;

int w;

15

Stroustrup/Programming 21

o\
Example: colored fat dash grid-..

orid.set_style(Line_style(LLine_style::dash,2));

M fat dashed red grid =]z
! .)

Stroustrup/Programming 22

: 7 \
Polylines

struct Open_polyline : Shape { // open sequence of lines

15

void add(Point p) { Shape::add(p); }

struct Closed polyline : Open_polyline { // closed sequence of lines

15

void draw_lines() const

{

Open_polyline::draw_lines(); // draw lines (except the closing one)
Il draw the closing line:

fl_line(point(number of points()-1).x,
point(number_of points()-1).y,
point(0).x,
point(0).y
)5
§

void add(Point p) { Shape::add(p); } // not needed (why?)

Stroustrup/Programming 23

7\

Open_polyline

Open_polyline opl;
opl.add(Point(100,100)); "=open poiyine
opl.add(Point(150,200));
opl.add(Point(250,250));
opl.add(Point(300,200));

Stroustrup/Programming 24

7\

Closed polyline

Closed_polyline cpl;
cpl.add(Point(100,100)); “=ciosed polyine
cpl.add(Point(150,200));
cpl.add(Point(250,250));
cpl.add(Point(300,200));

Stroustrup/Programming 25

7\

Closed polyline

‘- ine L)
epl.add(Point(100,250)); = Coeed poyie £ T

" A Closed_polyline is not aNsei§/gen
= some closed polylines look like polygons

= A Polygon is a Closed_polyline where no lines cross
= A Polygon has a stronger invariant than a Closed_polyline

Stroustrup/Programming 26

Text

struct Text : Shape {
Text(Point x, const string& s) // x is the bottom left of the first letter
: lab(s),
fnt(fl_font()), /I default character font
fnt_sz(fl_size()) /I default character size
{add(x); } // store x in the Shape part of the Text object

void draw_lines() const;

/I ... the usual “getter and setter’” member functions. ...
private:

string lab; // label

Font fnt; Il character font of label

int fnt_sz; // size of characters in pixels

i

Stroustrup/Programming

VR

Smarter computing.

27

7\

Add text

Text t(Point(200,200), " A closed polyline that isn’t a polygon'');
t.set_color(Color::blue);

W Closed polyline with text X

A closed polyling that isn't a polygon

Stroustrup/Programming 28

. ” \
Implementation: Text -

void Text::draw_lines() const

]
fl draw(lab.c_str(), point(0).x, point(0).y);

Il fl_draw() is a basic text drawing function from FLTK

Stroustrup/Programming AY)

” \
Color matrix

.1

o

*16 color matrix

" [et’s draw a color matrix

® To see some of the colors we have to work with

® To see how messy two-dimensional addressing can be
" See Chapter 24 for real matrices

" To see how to avoid inventing names for hundreds of objects

Stroustrup/Programming 30

VR

Color Matrix (16*16) =

Simple_window win20(pt,600,400,""16*16 color matrix'");

Vector ref<Rectangle> vr; // use like vector
/I but imagine that it holds references to objects
for (int i = 05 i<16; ++i) { // i is the horizontal coordinate
for (int j = 05 j<165 ++j) { /I j is the vertical coordinate
vr.push_back(new Rectangle(Point(i*20,j*20),20,20));
vr|vr.size()-1].set _fill_color(i*16+j);
win20.attach(vr|vr.size()-1]);

;

/[new makes an object that you can give to a Vector_ref to hold

/I Vector_ref is built using std::vector, but is not in the standard library

Stroustrup/Programming 31

Smarter computing.

Color matrix (16*16)

lor matrix

1
S EEEEEEEECEEEEN
)

[|
'S

More examples and graphics classes in the book (chapter 13)

32

Stroustrup/Programming

Next lecture

" What is class Shape?

" Introduction to object-oriented programming

Stroustrup/Programming

33

