
Chapter 10Chapter 10
Input/Output StreamsInput/Output Streams

Bjarne StroustrupBjarne Stroustrup
www.stroustrup.com/Programmingwww.stroustrup.com/Programming

OverviewOverview

 Fundamental I/O conceptsFundamental I/O concepts
 FilesFiles

 OpeningOpening
 Reading and writing streams Reading and writing streams

 I/O errorsI/O errors
 Reading a single integerReading a single integer

33Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Input and OutputInput and Output

44

input device device driver input library

our programour program

output library device driver output device

data source:

data destination:

Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

The stream modelThe stream model

 An An ostreamostream
 turns values of various types into character sequencesturns values of various types into character sequences
 sends those characters somewheresends those characters somewhere

 E.g.E.g., console, file, main memory, another computer, console, file, main memory, another computer

55

c

(1,234)

123

ostream

buffer

“somewhere”

Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

The stream modelThe stream model

 An An istreamistream
 turns character sequences into values of various types turns character sequences into values of various types
 gets those characters from somewheregets those characters from somewhere

 E.g.E.g., console, file, main memory, another computer, console, file, main memory, another computer

66

c

(1,234)

123

istream

buffer

“somewhere”

Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

The stream modelThe stream model

 Reading and writingReading and writing
 Of typed entitiesOf typed entities

 << (output) and >> (input) plus other operations<< (output) and >> (input) plus other operations
 Type safeType safe
 FormattedFormatted

 Typically stored (entered, printed, etc.) as textTypically stored (entered, printed, etc.) as text
 But not necessarily (see binary streams in chapter 11)But not necessarily (see binary streams in chapter 11)

 ExtensibleExtensible
 You can define your own I/O operations for your own typesYou can define your own I/O operations for your own types

 A stream can be attached to any I/O or storage deviceA stream can be attached to any I/O or storage device

77Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

FilesFiles

 We turn our computers on and offWe turn our computers on and off
 The contents of our main memory is transientThe contents of our main memory is transient

 We like to keep our dataWe like to keep our data
 So we keep what we want to preserve on disks and similar So we keep what we want to preserve on disks and similar

permanent storagepermanent storage
 A file is a sequence of bytes stored in permanent storageA file is a sequence of bytes stored in permanent storage

 A file has a nameA file has a name
 The data on a file has a formatThe data on a file has a format

 We can read/write a file if we know its name and formatWe can read/write a file if we know its name and format

88Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

A fileA file

 At the fundamental level, a file is a sequence of bytes At the fundamental level, a file is a sequence of bytes
numbered from 0 upwardsnumbered from 0 upwards

 Other notions can be supplied by programs that interpret a Other notions can be supplied by programs that interpret a
“file format”“file format”
 For example, the 6 bytes "123.45" might be interpreted as the For example, the 6 bytes "123.45" might be interpreted as the

floating-point number 123.45 floating-point number 123.45

99

0: 1: 2:

Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

FilesFiles

 General modelGeneral model

1010

disk I/O system Main memory

Files
(sequences of bytes)

iostreams Objects
(of various types)

Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

FilesFiles
 To read a fileTo read a file

 We must know its nameWe must know its name
 We must open it (for reading)We must open it (for reading)
 Then we can readThen we can read
 Then we must close itThen we must close it

 That is typically done implicitlyThat is typically done implicitly

 To write a fileTo write a file
 We must name itWe must name it
 We must open it (for writing)We must open it (for writing)

 Or create a new file of that nameOr create a new file of that name
 Then we can write itThen we can write it
 We must close it We must close it

 That is typically done implicitlyThat is typically done implicitly

1111Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Opening a file for readingOpening a file for reading

// // ……
int main()int main()
{{

cout << "Please enter input file name: ";cout << "Please enter input file name: ";
string name;string name;
cin >> name;cin >> name;
ifstream ist(name.c_str());ifstream ist(name.c_str()); // // ifstream ifstream is an“input stream from a file”is an“input stream from a file”

// // c_str()c_str() gives a low-level (“system” gives a low-level (“system”
//// or C-style) string from a C++ stringor C-style) string from a C++ string

//// defining an defining an ifstreamifstream with a name string with a name string
//// opens the file of that name for readingopens the file of that name for reading

if (!ist) error("can’t open input file ", name);if (!ist) error("can’t open input file ", name);
// // ……

1212Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Opening a file for writingOpening a file for writing

// // ……
cout << "Please enter name of output file: ";cout << "Please enter name of output file: ";
cin >> name;cin >> name;
ofstream ofs(name.c_str()); // ofstream ofs(name.c_str()); // ofstream ofstream is an “output stream from a file”is an “output stream from a file”

 //// defining an defining an ofstreamofstream with a name string with a name string
 //// opens the file with that name for writingopens the file with that name for writing

if (!ofs) error("can’t open output file ", name);if (!ofs) error("can’t open output file ", name);
// // ……

}}

1313Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Reading from a fileReading from a file
 Suppose a file contains a sequence of pairs Suppose a file contains a sequence of pairs

representing hours and temperature readingsrepresenting hours and temperature readings
0 60.70 60.7
1 60.61 60.6
2 60.32 60.3
3 59.223 59.22

 The hours are numbered The hours are numbered 0..230..23

 No further format is assumedNo further format is assumed
 Maybe we can do better than that (but not just now)Maybe we can do better than that (but not just now)

 TerminationTermination
 Reaching the end of file terminates the readReaching the end of file terminates the read
 Anything unexpected in the file terminates the readAnything unexpected in the file terminates the read

 E.g.E.g., , qq

1515Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Reading a fileReading a file
struct Reading {struct Reading { // // a temperature readinga temperature reading

int hour;int hour; // // hour after midnight [0:23]hour after midnight [0:23]

double temperature;double temperature;

Reading(int h, double t) :hour(h), temperature(t) { }Reading(int h, double t) :hour(h), temperature(t) { }

};};

vector<Reading> temps;vector<Reading> temps; // // create a vector to store the readingscreate a vector to store the readings

int hour;int hour;

double temperature;double temperature;

while (ist >> hour >> temperature) {while (ist >> hour >> temperature) { // // readread

if (hour < 0 || 23 <hour) error("hour out of range");if (hour < 0 || 23 <hour) error("hour out of range"); // // checkcheck

temps.push_back(Reading(hour,temperature));temps.push_back(Reading(hour,temperature)); //// storestore

}}

1616Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

I/O error handling I/O error handling

 Sources of errorsSources of errors
 Human mistakes Human mistakes
 Files that fail to meet specificationsFiles that fail to meet specifications
 Specifications that fail to match realitySpecifications that fail to match reality
 Programmer errorsProgrammer errors
 Etc.Etc.

 iostream reduces all errors to one of four statesiostream reduces all errors to one of four states
 good()good() // // the operation succeededthe operation succeeded
 eof()eof() // // we hit the end of input (“end of file”)we hit the end of input (“end of file”)
 fail()fail() // // something unexpected happenedsomething unexpected happened
 bad()bad() // // something unexpected and serious happenedsomething unexpected and serious happened

1717Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Sample integer read “failure”Sample integer read “failure”

 Ended by “terminator character”Ended by “terminator character”
 1 2 3 4 5 *1 2 3 4 5 *
 State is State is fail()fail()

 Ended by format errorEnded by format error
 1 2 3 4 5.61 2 3 4 5.6
 State is State is fail()fail()

 Ended by “end of file”Ended by “end of file”
 1 2 3 4 5 end of file1 2 3 4 5 end of file
 1 2 3 4 5 Control-Z (Windows)1 2 3 4 5 Control-Z (Windows)
 1 2 3 4 5 Control-D (Unix) 1 2 3 4 5 Control-D (Unix)
 State is State is eof()eof()

 Something really badSomething really bad
 Disk format errorDisk format error
 State is State is bad()bad()

1818Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

I/O error handlingI/O error handling
void fill_vector(istream& ist, vector<int>& v, char terminator)void fill_vector(istream& ist, vector<int>& v, char terminator)
{ { // // read integers fromread integers from ist ist into into v v until we reachuntil we reach eof() eof() oror terminator terminator

int i = 0;int i = 0;
while (ist >> i) v.push_back(i); // while (ist >> i) v.push_back(i); // read and store in read and store in vv until “some failure” until “some failure”
if (ist.eof()) return;if (ist.eof()) return; // // fine:fine: we found the end of filewe found the end of file
if (ist.bad()) error("ist is bad"); // if (ist.bad()) error("ist is bad"); // stream corrupted; let’sstream corrupted; let’s get out of here!get out of here!

if (ist.fail()) { // if (ist.fail()) { // clean up the mess as best we can and report the problemclean up the mess as best we can and report the problem
ist.clear(); // ist.clear(); // clear stream state, clear stream state, so that we can look for terminatorso that we can look for terminator
char c;char c;
ist>>c;ist>>c; // // read a character, hopefully read a character, hopefully terminatorterminator
if (c != terminator)if (c != terminator) { { // // unexpected characterunexpected character
ist.unget();ist.unget(); // // put that character backput that character back
ist.clear(ios_base::failbit);ist.clear(ios_base::failbit); // // set the state back to fail()set the state back to fail()
}}
}}

}}
1919Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Throw an exception for bad()Throw an exception for bad()

// // How toHow to makemake ist ist throw if it goes throw if it goes badbad::

ist.exceptions(ist.exceptions()|ios_base::badbit);ist.exceptions(ist.exceptions()|ios_base::badbit);

// // can be read ascan be read as

// // “set “set istist’s exception mask to whatever it was plus badbit”’s exception mask to whatever it was plus badbit”

// // or as “throw an exception if the stream goes bad”or as “throw an exception if the stream goes bad”

Given that, we can simplify our input loops by no longer checking for Given that, we can simplify our input loops by no longer checking for
badbad

2020Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Simplified input loopSimplified input loop
void fill_vector(istream& ist, vector<int>& v, char terminator)void fill_vector(istream& ist, vector<int>& v, char terminator)
{ { // // read integers fromread integers from ist ist into into v v until we reachuntil we reach eof() eof() oror terminator terminator

int i = 0;int i = 0;
while (ist >> i) v.push_back(i);while (ist >> i) v.push_back(i);
if (ist.eof()) return;if (ist.eof()) return; // // fine:fine: we found the end of filewe found the end of file

// // not not good()good() and not and not bad()bad() and not and not eof()eof(), , istist must be must be fail()fail()
ist.clear();ist.clear(); // // clear stream stateclear stream state
char c;char c;
ist>>c;ist>>c; // // read a character, hopefully read a character, hopefully terminatorterminator
if (c != terminator) {if (c != terminator) { // // ouch: not the terminator, so we must failouch: not the terminator, so we must fail

ist.unget();ist.unget(); // // maybe my caller can use that charactermaybe my caller can use that character
ist.clear(ios_base::failbit);ist.clear(ios_base::failbit); // // set the state back to fail()set the state back to fail()

}}
}}

2121Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Reading a single valueReading a single value

// // first simple and flawed attempt:first simple and flawed attempt:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
int n = 0;int n = 0;
while (cin>>n) {while (cin>>n) { // // readread

if (1<=n && n<=10) break;if (1<=n && n<=10) break; //// check rangecheck range
cout << "Sorry, "cout << "Sorry, "
 << n<< n
 << " is not in the [1:10] range; please try again\n";<< " is not in the [1:10] range; please try again\n";

}}

 Three kinds of problems are possibleThree kinds of problems are possible
 the user types an out-of-range valuethe user types an out-of-range value
 getting no value (end of file)getting no value (end of file)
 the user types something of the wrong type (here, not an integer)the user types something of the wrong type (here, not an integer)

2222Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Reading a single valueReading a single value

 What do we want to do in those three cases? What do we want to do in those three cases?
 handle the problem in the code doing the read?handle the problem in the code doing the read?
 throw an exception to let someone else handle the throw an exception to let someone else handle the

problem (potentially terminating the program)?problem (potentially terminating the program)?
 ignore the problem?ignore the problem?

 Reading a single valueReading a single value
 Is something we often do many timesIs something we often do many times
 We want a solution that’s very simple to useWe want a solution that’s very simple to use

2323Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Handle everything: Handle everything: What a mess!What a mess!
cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
int n = 0;int n = 0;
while (n==0) {while (n==0) { // // Spot the bug!Spot the bug!

cin >> n;cin >> n;
if (cin) {if (cin) { // // we got an integer; now check it:we got an integer; now check it:

if (1<=n && n<=10) break;if (1<=n && n<=10) break;
cout << "Sorry, " << n << " is not in the [1:10] range; please try again\n";cout << "Sorry, " << n << " is not in the [1:10] range; please try again\n";

}}
else if (cin.fail()) {else if (cin.fail()) { // // we found something that wasn’t an integerwe found something that wasn’t an integer

cin.clear();cin.clear(); // // we’d like to look at the characterswe’d like to look at the characters
cout << "Sorry, that was not a number; please try again\n";cout << "Sorry, that was not a number; please try again\n";
char ch;char ch;
while (cin>>ch && !isdigit(ch)) ;while (cin>>ch && !isdigit(ch)) ; // // throw away non-digitsthrow away non-digits
if (!cin) error("no input"); if (!cin) error("no input"); // // we didn’t find a digit: give upwe didn’t find a digit: give up
cin.unget();cin.unget(); // // put the digit back, so that we can read the numberput the digit back, so that we can read the number

}}
else else

error("no input");error("no input"); // // eof or bad: give upeof or bad: give up
}}
//// if we get here n is in [1:10]if we get here n is in [1:10]

2424Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

The mess: The mess: trying to do everything at oncetrying to do everything at once

 Problem: We have all mixed togetherProblem: We have all mixed together
 reading valuesreading values
 prompting the user for inputprompting the user for input
 writing error messageswriting error messages
 skipping past “bad” input charactersskipping past “bad” input characters
 testing the input against a rangetesting the input against a range

 Solution: Split it up into logically separate partsSolution: Split it up into logically separate parts

2525Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

What do we want?What do we want?

 What logical parts do we what?What logical parts do we what?

 int get_int(int low, int high); // int get_int(int low, int high); // read an int in [read an int in [lowlow....highhigh] from] from cincin

 int get_int();int get_int(); // // read an int from read an int from cincin
//// so that we can check the range so that we can check the range int int

 void skip_to_int()void skip_to_int();; //// we found some “garbage” characterwe found some “garbage” character
//// so skip until we find an intso skip until we find an int

 Separate functions that do the logically separate actionsSeparate functions that do the logically separate actions

2626Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Skip “garbage”Skip “garbage”

void skip_to_int()void skip_to_int()
{{

if (cin.fail()) {if (cin.fail()) { // // we found something that wasn’t an integerwe found something that wasn’t an integer
cin.clear();cin.clear(); // // we’d like to look at the characterswe’d like to look at the characters
char ch;char ch;
while (cin>>ch) {while (cin>>ch) { // // throw away non-digitsthrow away non-digits
if (isdigit(ch)) {if (isdigit(ch)) {
cin.unget();cin.unget(); // // put the digit back,put the digit back,
// // so that we can read the numberso that we can read the number
return;return;
}}
}}
}}
error("no input");error("no input"); // // eof or bad: give upeof or bad: give up

}}

2727Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Get (any) integerGet (any) integer

int get_int()int get_int()
{{

int n = 0;int n = 0;
while (true) {while (true) {

if (cin >> n) return n; if (cin >> n) return n;
cout << "Sorry, that was not a number; please try again\n";cout << "Sorry, that was not a number; please try again\n";
skip_to_int();skip_to_int();

}}
}}

2828Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Get integer in rangeGet integer in range

int get_int(int low, int high)int get_int(int low, int high)
{{

cout << "Please enter an integer in the range "cout << "Please enter an integer in the range "
<< low << " to " << high << " (inclusive):\n";<< low << " to " << high << " (inclusive):\n";

while (true) {while (true) {
int n = get_int();int n = get_int();
if (low<=n && n<=high) return n;if (low<=n && n<=high) return n;
cout << "Sorry, "cout << "Sorry, "

<< n << " is not in the [" << low << ':' << high<< n << " is not in the [" << low << ':' << high
<< "] range; please try again\n";<< "] range; please try again\n";

}}
}}

2929Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

UseUse

int n = get_int(1,10);int n = get_int(1,10);

cout << "n: " << n << endl;cout << "n: " << n << endl;

int m = get_int(2,300);int m = get_int(2,300);

cout << "m: " << m << endl;cout << "m: " << m << endl;

 Problem:Problem:
 The “dialog” is built into the read operationsThe “dialog” is built into the read operations

3030Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

What do we What do we reallyreally want? want?
// // parameterize by integer range and “dialog”parameterize by integer range and “dialog”

int strength = get_int(1, 10,int strength = get_int(1, 10,
"enter strength","enter strength",
"Not in range, try again");"Not in range, try again");

cout << "strength: " << strength << endl;cout << "strength: " << strength << endl;

int altitude = get_int(0, 50000,int altitude = get_int(0, 50000,
"please enter altitude in feet","please enter altitude in feet",
"Not in range, please try again");"Not in range, please try again");

cout << "altitude: " << altitude << "ft. above sea level\n";cout << "altitude: " << altitude << "ft. above sea level\n";

 That’s often the really important questionThat’s often the really important question
 Ask it repeatedly during software developmentAsk it repeatedly during software development
 As you learn more about a problem and its solution, your answers improveAs you learn more about a problem and its solution, your answers improve

3131Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

ParameterizeParameterize
int get_int(int low, int high, const string& greeting, const string& sorry)int get_int(int low, int high, const string& greeting, const string& sorry)
{{

cout << greeting << ": [" << low << ':' << high << "]\n";cout << greeting << ": [" << low << ':' << high << "]\n";
while (true) {while (true) {
int n = get_int();int n = get_int();
if (low<=n && n<=high) return n;if (low<=n && n<=high) return n;
cout << sorry << ": [" << low << ':' << high << "]\n";cout << sorry << ": [" << low << ':' << high << "]\n";
}}

}}

 Incomplete parameterization: Incomplete parameterization: get_int()get_int() still “blabbers” still “blabbers”
 ““utility functions” should not produce their own error messagesutility functions” should not produce their own error messages
 Serious library functions do not produce error messages at allSerious library functions do not produce error messages at all

 They throw exceptions (possibly containing an error message)They throw exceptions (possibly containing an error message)

3232Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

User-defined output: operator<<()User-defined output: operator<<()

 Usually trivialUsually trivial
ostream& operator<<(ostream& os, const Date& d)ostream& operator<<(ostream& os, const Date& d)

{{

return os << '(' << d.year()return os << '(' << d.year()

<< ',' << d.month()<< ',' << d.month()

<< ',' << d.day() << ')';<< ',' << d.day() << ')';

}}

 We often use several different ways of outputting a valueWe often use several different ways of outputting a value
 Tastes for output layout and detail vary Tastes for output layout and detail vary

3333Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

UseUse

void do_some_printing(Date d1, Date d2)void do_some_printing(Date d1, Date d2)

{{

cout << d1;cout << d1; //// means means operator<<(cout,d1) ;operator<<(cout,d1) ;

cout << d1 << d2;cout << d1 << d2;

//// means means (cout << d1) << d2;(cout << d1) << d2;

 //// means means (operator<<(cout,d1)) << d2;(operator<<(cout,d1)) << d2;

// // meansmeans operator<<((operator<<(cout,d1)), d2) ; operator<<((operator<<(cout,d1)), d2) ;

}}

3434Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

User-defined input: operator>>()User-defined input: operator>>()

istream& operator>>(istream& is, Date& dd)istream& operator>>(istream& is, Date& dd)
// // Read date in format: (year , month , day)Read date in format: (year , month , day)

{{
int y, d, m;int y, d, m;
char ch1, ch2, ch3, ch4;char ch1, ch2, ch3, ch4;
is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;
if (!is) return is;if (!is) return is; // // we didn’t get our values, so just leavewe didn’t get our values, so just leave
if (ch1!='(' || ch2!=',' || ch3!=',' || ch4!=')') {if (ch1!='(' || ch2!=',' || ch3!=',' || ch4!=')') { // // oops: format erroroops: format error

is.clear(ios_base::failbit);is.clear(ios_base::failbit); // // something wrong: set state to something wrong: set state to
fail()fail()

return is;return is; // // and leaveand leave
}}
dd = Date(y,Month(m),d);dd = Date(y,Month(m),d); // // update ddupdate dd
return is;return is; // // and leave with and leave with isis in the good() state in the good() state

}}

3535Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

Next LectureNext Lecture

Customizing input and output (chapter 11)Customizing input and output (chapter 11)

3636Stroustrup/Programming -- Oct'10Stroustrup/Programming -- Oct'10

