Chapter 10
[nput/Output Streams

Bjarne Stroustrup

www.stroustrup.com/Programming

Overview

" Fundamental I/O concepts
" Files

" Opening

® Reading and writing streams

" [/O errors

" Reading a single integer

Stroustrup/Programming -- Oct'10

7\
Input and Output

data source:

input device device driver input library

our program

data destination:

output library device driver output device

Stroustrup/Programming -- Oct'10 4

7\
The Stre am mO del Smarter computing.

“somewhere”

(1,234) ostream

123 [buffer }

An ostream
" turns values of various types into character sequences

® gsends those characters somewhere
E.g., console, file, main memory, another computer

Stroustrup/Programming -- Oct'10 5

7\
The Stre am mO del Smarter computing.

C
“somewhere”
(1,234) 1stream
123 [buffer }

An istream
" turns character sequences into values of various types

" octs those characters from somewhere
E.g., console, file, main memory, another computer

Stroustrup/Programming -- Oct'10 6

7\
The Stre am mO del Smarter computing.

" Reading and writing
" Of typed entities

% << (output) and >> (input) plus other operations
" Type safe

" Formatted

" Typically stored (entered, printed, etc.) as text

" But not necessarily (see binary streams in chapter 11)
" Extensible

" You can define your own I/O operations for your own types

" A stream can be attached to any I/O or storage device

Stroustrup/Programming -- Oct'10 7

7 \
F i 1 e S Smarter computing.

We turn our computers on and off
" The contents of our main memory is transient

We like to keep our data

" So we keep what we want to preserve on disks and similar
permanent storage

A file 1s a sequence of bytes stored in permanent storage
" A file has a name
" The data on a file has a format

We can read/write a file if we know its name and format

Stroustrup/Programming -- Oct'10 8

VR

A ﬁ 1 e Smarter computing.

" At the fundamental level, a file is a sequence of bytes
numbered from 0 upwards

" Other notions can be supplied by programs that interpret a
“file format™

" For example, the 6 bytes "123.45" might be interpreted as the
floating-point number 123.45

Stroustrup/Programming -- Oct'10 9

. ” \
Files

" General model

sy | <@ DUORGSEHE > Main memory

R

10streams :
Files Objects

(sequences of bytes) (of various types)

Stroustrup/Programming -- Oct'10 10

. ” \
Files

" To read a file

= We must know its name
" We must open it (for reading)
® Then we can read
® Then we must close it
" That 1s typically done implicitly
" To write a file
= We must name it

" We must open it (for writing)
® Or create a new file of that name

® Then we can write it

" We must close it
® That is typically done implicitly

Stroustrup/Programming -- Oct'10 11

: , 7\
Opening a file for reading

o
int main()
{
cout << ""Please enter input file name: "’;
string name;
cin >> name;
ifstream ist(name.c_str()); /] ifstream is an “input stream from a file”
/[c_str() gives a low-level (“system”
/[or C-style) string from a C++ string

/[defining an ifStream with a name string
/[opens the file of that name for reading
if (list) error("can’t open input file "', name);
/i

Stroustrup/Programming -- Oct'10 12

Opening a file for writing .

A,

cout << ""Please enter name of output file: ";

cin >> name;

ofstream ofs(name.c_str()); // ofstream is an “output stream from a file”
/[defining an ofstream with a name string
/[opens the file with that name for writing

if (!ofs) error('"can’t open output file "', name);
[

Stroustrup/Programming -- Oct'10 13

) 7 \
Reading from a file

Suppose a file contains a sequence of pairs
representing hours and temperature readings

060.7
1 60.6
2 60.3
3 59.22

The hours are numbered o..23
No further format is assumed
" Maybe we can do better than that (but not just now)
Termination
® Reaching the end of file terminates the read
" Anything unexpected in the file terminates the read
"Lg.q

Stroustrup/Programming -- Oct'10 15

VR

Smarter computing.

Reading a file

struct Reading { /I a temperature reading

int hour; /[hour after midnight [0.23]

double temperature;

Reading(int h, double t) :hour(h), temperature(t) { }

5

vector<Reading> temps; /[create a vector to Store the readings

int hour;

double temperature;

while (ist >> hour >> temperature) { // read

if (hour < 0 || 23 <hour) error('"hour out of range'); // check

temps.push_back(Reading(hour,temperature)); /[store

§

Stroustrup/Programming -- Oct'10 16

VR

I/O error handling Smarter computing.

" Sources of errors

Human mistakes

Files that fail to meet specifications
Specifications that fail to match reality
Programmer errors

Etc.

" jostream reduces all errors to one of four states

g00d() // the operation succeeded

eof() // we hit the end of input (“end of file”)

fail() // something unexpected happened

bad() //something unexpected and serious happened

Stroustrup/Programming -- Oct'10 17

VR

Sample integer read “failure,, S[narer computing,

Ended by “terminator character”

B 12345%*
" State is fail()

Ended by format error

B 123456
" State is fail()

Ended by “end of

file”

" 12345 end of file
" 12345 Control-Z (Windows)
" 12345 Control-D (Unix)

" State is eof()

Something really bad

® Disk format error
" State is bad()

Stroustrup/Programming -- Oct'10

18

VR

O error handling

void fill_vector(istream& ist, vector<int>& v, char terminator)
{ [/l read integers from ist into v until we reach eof() or terminator
inti=0;
while (ist >> i) v.push_back(i); // read and store in v until “some failure”
if (ist.eof()) return; I/ fine: we found the end of file
if (ist.bad()) error("ist is bad'); // stream corrupted, let’s get out of here!

if (ist.fail()) { // clean up the mess as best we can and report the problem

ist.clear(); /] clear stream state, so that we can look for terminator
char c;
ist>>c; /] read a character, hopefully terminator

if (¢ != terminator) { // unexpected character
ist.unget(); // put that character back
ist.clear(ios_base::failbit); /I set the state back to fail()

)
)

Stroustrup/Programming -- Oct'10 19

: 7\
Throw an exception for bad() ««-

/[How to make ist throw if it goes bad.
ist.exceptions(ist.exceptions()[ios_base::badbit);

/I can be read as

/[“set ist’s exception mask to whatever it was plus badbit™

/I oras “throw an exception if the stream goes bad”

Given that, we can simplify our mmput loops by no longer checking for
bad

Stroustrup/Programming -- Oct'10 y40)

VR

Simplified input loop

void fill_vector(istream& ist, vector<int>& v, char terminator)

{

I read integers from ist into v until we reach eof() or terminator
inti=0;
while (ist >> i) v.push_back(i);
if (ist.eof()) return; // fine: we found the end of file

I/ not good() and not bad() and not eof(), ist must be fail()

ist.clear(); /I clear stream state

char c;

ist>>c; I/ vead a character, hopefully terminator

if (c != terminator) { // ouch: not the terminator, so we must fail
ist.unget(); /I maybe my caller can use that character
ist.clear(ios_base::failbit); /[set the state back to fail()

Stroustrup/Programming -- Oct'10 21

! . 7 \
Reading a single value -

/] first simple and flawed attempt.

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n'';
intn=0;
while (cin>>n) { // read
if (1<=n && n<=10) break;// check range
cout << "Sorry, "
<<n

<< " is not in the [1:10] range; please try again\n'';

% Three kinds of problems are possible

the user types an out-of-range value

getting no value (end of file)

the user types something of the wrong type (here, not an integer)

Stroustrup/Programming -- Oct'10 22

! . 7 \
Reading a single value -

® What do we want to do in those three cases?
® handle the problem in the code doing the read?

" throw an exception to let someone else handle the
problem (potentially terminating the program)?

® jgnore the problem?

® Reading a single value
" Is something we often do many times

" We want a solution that’s very simple to use

Stroustrup/Programming -- Oct'10 23

: VN
Handle everything:

cout << ""Please enter an integer in the range 1 to 10 (inclusive):\n';

int n = 0;
while (n==0) { /I Spot the bug!
cin >> n;
if (cin) { /] we got an integer; now check it.

if (1<=n & & n<=10) break;
cout << "Sorry, " << n <<'" is not in the [1:10] range; please try again\n"';

j
else if (cin.fail()) { Il we found something that wasn't an integer
cin.clear(); I/ we’d like to look at the characters
cout << "Sorry, that was not a number; please try again\n"';
char ch;
while (cin>>ch && lisdigit(ch)) ; /I throw away non-digits
if (!cin) error(''no input'); Il ' we didn’t find a digit.: give up
cin.unget(); /I put the digit back, so that we can read the number
h
else

error(''no input'"); // eof or bad. give up

§
//'if we get here n is in [1:10]

Stroustrup/Programming -- Oct'10 24

VR

Smarter computing.

The mess: trying to do everything at once

" Problem: We have all mixed together
" reading values
" prompting the user for mput
" writing error messages
" skipping past “bad’” input characters
" testing the input against a range

" Solution: Split it up nto logically separate parts

Stroustrup/Programming -- Oct'10 25

” \
What do we want?

" What logical parts do we what?
" int get_int(int low, int high); // read an int in [low..high] from cin

" int get_int(); /[read an int from cin
// so that we can check the range int

" vyoid skip_to_int(); /[we found some “garbage’ character
/] so skip until we find an int

" Separate functions that do the logically separate actions

Stroustrup/Programming -- Oct'10 26

Skip “garbage”

void skip_to_int()

d

if (cin.fail()) {// we found something that wasn 't an integer

cin.clear(); // we’d like to look at the characters
char ch;

while (cin>>ch) { I throw away non-digits

if (isdigit(ch)) {

cin.unget(); // put the digit back,

/I so that we can read the number

return;

J

J

J

error(''no input"); // eof or bad.: give up

Stroustrup/Programming -- Oct'10

VR

Smarter computing.

27

. VR
Get (any) integer

int get_int()

d
int n = 0;
while (true) {
if (cin >> n) return n;
cout << "Sorry, that was not a number; please try again\n'';
skip_to_int();
f
J

Stroustrup/Programming -- Oct'10 28

: : 7\
Get 1nteger ln range Smarter computing.

int get_int(int low, int high)
|
cout << '"Please enter an integer in the range "
<<low <<" to " << high << " (inclusive):\n"';
while (true) {
int n = get_int();
if (low<=n && n<=high) return n;
cout << "Sorry, "
<<n << " is not in the [" <<low << ':' << high
<< "] range; please try again\n"';

Stroustrup/Programming -- Oct'10 29

VR

| l S ‘ Smarter computing.

int n = get_int(1,10);
cout << '"n: " << n << endl;

int m = get_int(2,300);

cout << "'m: " << m << endl;

" Problem:

" The “dialog” 1s built mto the read operations

Stroustrup/Programming -- Oct'10 30

” \
What do we really want? -

/[parameterize by integer range and “dialog”

int strength = get int(1, 10,
"enter strength',
'""Not in range, try again'');
cout << "strength: " << strength << endl;

int altitude = get_int(0, S0000,
""please enter altitude in feet'",
'""Not in range, please try again"');
cout << "altitude: " << altitude << '"ft. above sea level\n'';

" That’s often the really important question
" Ask it repeatedly during software development
" As you learn more about a problem and its solution, your answers improve

Stroustrup/Programming -- Oct'10 31

) ” \
Parameterize

int get_int(int low, int high, const string& greeting, const string& sorry)
d

cout << greeting << '": [" <<low << ":' << high << "|\n"";

while (true) {

int n = get_int();

if (low<=n && n<=high) return n;

cout << sorry <<":[" <<low <<'":' << high << "]\n"’;

J
§

" [ncomplete parameterization: get int() still “blabbers™
" “utility functions” should not produce their own error messages

" Serious library functions do not produce error messages at all
" They throw exceptions (possibly containing an error message)

Stroustrup/Programming -- Oct'10 32

VR
User-defined output: operator<<()--

" Usually trivial
ostream& operator<<(ostream& os, const Date& d)

t

return os << '(' << d.year()
<<'.' << d.month()
<<, <<d.day() <<")";

" We often use several different ways of outputting a value

" Tastes for output layout and detail vary

Stroustrup/Programming -- Oct'10 33

VR

| l S ‘ Smarter computing.

void do_some_printing(Date d1, Date d2)

d
cout << d1; /[means operator<<(cout,dl) ;
cout << d1 << d2;
[l means (cout << dl) << d2;
/[means (operator<<(cout,dl)) << d2;
/[means operator<<((operator<<(cout,dl)), d2) ;
)

Stroustrup/Programming -- Oct'10 34

. 7\
User-defined input: operator=>>().

istream& operator>>(istream& is, Date& dd)
/I Read date in format. (year , month , day)

t

inty, d, m;
char chl, ch2, ch3, ch4;
is >> chl >>y >> ch2 >> m >> ch3 >> d >> ch4;

if (lis) return is; /[we didn’t get our values, so just leave

if (ch1!="(" || ch2!="," || ch3!="." || ch4!=")") { /[oops: format error
is.clear(ios_base::failbit); /[something wrong: set state to

fail()
return is; /[and leave

§

dd = Date(y,Month(m),d); /[update dd

return is; Il and leave with is in the good() state

Stroustrup/Programming -- Oct'10 35

Next Lecture

Customizing input and output (chapter 11)

Stroustrup/Programming -- Oct'10 36

