cit73sgd.doc

CIT73 Object Oriented Concepts

Study Guide D for Week 13, Chapter 10

OO Concepts vs. UML – Page 167

OO concepts come first although this chapter is a review of UML. It is only a brief overview of UML, and it contains the minimum that we should be comfortable with after completing this course. The first nine chapters concentrated on helping us to understand object oriented concepts with an introduction to basic UML syntax as it related to a particular concept. Learning UML before learning OO concepts is like learning how to read the schematic for a motherboard without any clue as to what a motherboard is in a PC.

What is UML? – Page 167

UML is a modeling language and provides a standard for documenting OO Systems graphically. It can be used during the design process as well as for documenting the final design.

Class Diagrams – Page 168

Note the diagram in figure 10.1 has three parts: the name of the class, the attributes, and the methods. It is not as complete as those that we have drawn in this class. The following corrections should be made to bring it up to our standards:

a. myCab:Cab added to attributes

b. all methods should indicate a parameter list, even if no parameters exist()

c. all methods should indicate name and type for each parameter before indicating return type

 example: + setName(name:String) : void

It is important to understand the Java syntax for writing the Cabbie class on page 169. Note that ….. private Cab myCab; …should be added to attributes.

Attributes and Methods – Pages 170 – 171

Attributes are documented with an access code, name, parameter list (with data types and var names), followed by the return type).

 UML example: +setName (name:String): void

 Java example: public void SetName (String name);

Access Designations

+ or public = can be accessed from any class

- or private = can only be accessed from methods in this class

or protected = can be accessed from methods in this class and methods in any sub class of this class

Inheritance – Pages 172 – 173

Note figure 10.2 and 10.4. These are excellent samples of a UML diagram that only show the inheritance relationship between classes. Also note that there is no multiple inheritance shown on these diagrams, since multiple inheritance is not allowed in Java. The inheritance can grow to multiple levels and note that three levels are shown in figure 10.4 and two levels in figure 10.2.

Interfaces – Page 174

Interfaces are used to force implementation of methods into all classes that implement a particular interface. In figure 10.5 the Dog class implements the Nameable interface. That indicates that the dog class must implement the getName () method and the setName () method.

Composition with Aggregation – Pages 174 – 175

Inheritance indicates that a IS-A relationship exists. Composition indicates a HAS-A relationship exists. Aggregation is a stronger type of composition. An example of aggregation is Car HAS-A Engine relationship and the Engine is very much a part of the car. The examples in figure 10.6 and 10.7 are good examples of UML diagrams with the Aggregation form of Composition. In this relationship we see only the whole, as all of the parts are inside of the whole.

Definition - Aggregation occurs when a class is actually a component of another class and represents a part of the whole. Classes are built with parts from another class with an aggregation relationship.

Composition with Association – Pages 176 – 177

Association is still a HAS-A relationship, but it is weaker than Aggregation. The example of a computer System is a good demo of a UML diagram showing composition. The computer HAS-A mouse and keyboard, but they are not a part of the whole (i.e. computer). In this relationship “we see” the whole and many of the parts.

Definition – Association occurs when a class needs the services of another class. Services are provided between classes with an association relationship.

Cardinality – Pages 177 – 178

Cardinality represents the numbers of objects in one class that can collaborate (using Association) with an object of another class. A car can have one and only one engine, so we say a car is associated with one engine and the engine is associated with one car. This is aggregation and the Cardinality is 1.

Note the excellent UML diagram showing Cardinality in an UML diagram. An Employee is associated/related to 0. .1 spouse objects and an Employee is associated/related to 0. .n child objects. The Employee object is associated/related to1division, and the employee object is also associated/related to 1. .n JobDescription objects. You should review this intro to cardinality on pages 161 through 163 as well as the discussion on pages 177 – 178.

Association vs. Aggregation

There are only subtle differences between association relationships and aggregation relationships. Aggregation represents a “stronger relationship”. A Car object HAS-A engine object and can be represented as aggregation by a straight line connecting the two with a diamond at the Car object. A Car object HAS-A engine can also be represented as association and cardinality with a straight line connecting the two with a cardinality of 1 next to each object. That would indicate that a Car object was associated with 1 engine object and each engine object is associated with 1 Car object.

In some of the original object models we might use aggregation to indicate that the engine is an intricate part of the Car. As we approach the coding and implementation phases there are several advantages to representing all compositions as association relationships.

When using UML syntax for aggregation we would show each of four wheel objects as “connected” to the Car object with a diamond at the Car object. Using the UML syntax for association, we would show one wheel object connected to the Car object by a single straight line. The cardinality would indicate that each Car object was associated with 1 . . n wheel objects and each wheel object would be associated with 1 Car object. When coding the java classes, the Car object would have an object attribute of the ArrayList<wheel> class to hold 1 . . n wheel objects that are associated with this Car. The wheel object would have an object attribute of the Car class to hold the 1 Car object that is associated with this wheel.
Advantages to Using Association

1. We can easily code the class attributes for composition relationships from the cardinality symbols in the UML object model associations.
2. Since Arrays, ArrayLists, and LinkedLists are collection classes in Java, we can code a collection object attribute to hold the addresses of several Class B objects in a Class A object. The Class A object would be associated with 0 . . n or 1 . .n Class B objects.
3. We can code a single object attribute to hold the address of a Class A object, Inside of the Class B object. This indicates that each Class B object is associated with one Class A object.

Summary – UML Diagrams

UML Diagrams are used to represent the following relationships:

a. Inheritance where a super class is “extended” into a sub class, and the sub class inherits all of the attributes and methods of the super class. This is represented by a solid arrow with a closed point from the sub class to the super class.

b. Interface implementation where a class implements an interface and must implement all of the methods that appear as method headers in the interface. This is represented by a line of dashes with a closed point from the class that is implementing the interface to the interface.

c. Aggregation (Composition) where one class is shown as an aggregate part of another class such as a steering wheel related to an automobile. A straight line with a diamond point is used to connect the two classes and indicate this relationship in UML. Note that the diamond point should be placed next to the automobile in this example.

d. Association (Composition) where one class is “associated” with another class but not part of another class. A good example of this relationship would exist between a personal computer and a mouse or keyboard. A straight line with no point is used to “associate” a class with another class.

