
Design of a 4-bit Magnitude Comparator 
Lab L05

Introduction: 
Figure 5(a) shows the overall structure of the 4-bit adder that you designed in Lab L03 (without 
the subtractor circuit). It adds two 4-bit operands X and Y and computes their 4-bit sum Z; it also 
accepts a carry in signal and produces a carry out signal. The adder's carry in signal is an input bit 
that is added to the operand bits in bit position 0 (least significant bit). The adder's carry out 
signal is the carry out bit from the operand bits in bit position 3 (the most significant bit).  The 4-
bit  adder  that  you  previously  designed  works  for  both  unsigned  numbers  as  well  as  two's 
complement numbers; this is because unsigned addition and two's complement addition are done 
the same way. Another useful arithmetic component is a  magnitude comparator. Figure 5(b) 
shows the overall structure of a 4-bit comparator. It compares two 4bit unsigned operands X and 
Y and the outcome of the comparison is specified by three 1-bit outputs that indicate whether X < 
Y, X = Y, or X > Y. 

Figure 5: Symbols for (a) a 4-bit adder; (b) a 4-bit magnitude comparator 

In Figure 5, each wire that is labeled with a crosshatch represents 4 wires, each carrying one bit 
of information. The comparator is quite difficult to design at the gate level.  In this lab, you will 
construct a 4-bit magnitude comparator using two 4-bit adder modules and a few two-input logic 
gates. 



Design: 
We can design a magnitude comparator for two n-bit unsigned numbers X and Y efficiently by 
noting that X > Y is equivalent to: 

X - Y > 0  (i) 

Now Y can be computed by the subtraction step (2n - 1) - NOT(Y), where NOT(Y) is the bitwise 
complement of Y and (2n -1) is a sequence of n 1s. For example, if n = 4 and Y = 1001 (decimal 
9), then NOT(Y) = 0110 (decimal 6), 24  - 1 = 1111 (decimal 15), and Y = 1111 - 0110 = 1001 
(decimal 9). Hence inequality (i) can be replaced by X - (2n - 1 - NOT(Y)) > 0, implying  

X + NOT(Y) > 2n - 1 = 11...1 (ii) 

Now suppose we add X and NOT(Y) using an adder such as that of Figure 5(a). If the inequality 
of (i) is satisfied, then adder's carry-out signal cout will be 1, because X + NOT(Y) will exceed 
the largest n-bit number  2n -1. In the preceding example with  X = 1100 (decimal 12) and  Y = 
1001 (decimal 9), we have  X + NOT(Y) = 1100 + 0110 = 10010 (decimal 18), for which the 
output carry is 1. We can therefore perform the original magnitude test X > Y as follows: 

1. Compute NOT(Y) from Y.
2. Add X and NOT(Y) via an n-bit adder and use the output-carry signal cout as the 

primary output. If cout = 1, then X > Y; if cout = 0, the X <= Y. 

By switching X and Y, we can generate the "less than" output denoted X < Y in exactly the same 
manner. We do not need the sum outputs of the two adder modules; hence we can discard them, 
thereby reducing the adders to carry-generation circuits.  We have yet to compute the "equal" 
output denoted X = Y. One way to compute it is to compare each bit Xi of X to the corresponding 
bit Yi of Y. But you should come up with an easier way to compute the "equal" output utilizing 
the X > Y and X < Y outputs. 

Submitting Results

1.All macros are to be submitted with your assignment.  Please make sure that each macro 
includes your name, date and assignment number.  Also that they are named correctly ie: 
LastnameF_L05x  ( Where Lastname is your last name, F is your first initial and x is a unique 
letter [a-z] that you used to distinguish each macro.


