EXECUTIVE SUMMARY

Learning computer programming is never a simple task for novicasy Malergraduate
students experience several challenges in learning programnpegialy their first
programming language. There are chances of learning and progresgirmgramming
but there are also high chances of not learning and failing it. &etemhniques are
employed by many lecturers today in efforts to ensure that tatheabasic knowledge of
programming gets across to the students. C-Jump Computer PrograBoandgs a new
game in the game industry that teaches basic computer prograrstaiements to its
players. It educates the basic commands of a programming langualyegs the concept
of variables, “if", “else”, “switch”, “while” and “continue”. Plays will be able to see
how the real computer program looks like. Though it is targeted for yolaggrs of age
11 and above, it's potential to be used as a tool to aid undergraduate sstodkesairn
basic computer programming was investigated. Both qualitative and tqtigeti
techniques were employed to collect the necessary data foruihg Jtwenty fresh
undergraduate students were divided into 5 groups to play the game.rni@eessions
were closely observed to note their reactions and gestures, thements were tape
recorded, field notes were taken and upon completion of the game, @iijppats were
encouraged to answer a set of questionnaire. Besides obtaining inpuhérstaudents, 5
computer programming lecturers were interviewed. The LikerteStathnique was
employed in analyzing input of the students. From the finding, it veas that there was
positive response from the students. Most of the interviewed lectoceiked the idea
of using games to teach programming but have suggested seve@ampnts for C-
Jump to be used for tertiary level students. Several other issresewcountered while
the C-Jump sessions were closely observed. Therefore, a few eeammendations
were suggested to overcome some of the issues in concern. Nesgsrthiedefinding
strongly indicates that there is some amount of basic programknmgledge to gain
from the game.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

1.1 Introduction

1.2 Background

1.3 Special Terms and Words

1.4 Aims of the Study

1.5 Outline of Subsequent Chapters
LITERATURE REVIEW

2.1 Whatis a Board Game?

2.2 History of Board Games

2.3 Nature of Board Games

2.4 Why Board Games are better than Electronic Games

2.5 Modern Board Games

2.6 About the C-Jump Board Game

2.6.1 Introduction

2.6.2 Board Game Design

2.6.3 The Look and Feel

2.6.4 The Game Board

2.6.5 The Rules

2.6.6 Depth of C-Jump

2.6.7 People’s Views about the C-Jump

METHODOLOGY AND FINDINGS

3.1
3.2
3.3
3.4
3.5
3.6

ANALYSIS
4.1
4.2

Introduction

Participant Observation
Tape Recording

Field Notes
Questionnaires

Expert Interviews

Students and the C-Jump board game
Lecturers and the C-Jump board game

ISSUES, RECOMMENDATIONS AND SUMMARY

PAGE

oo O

10

11
11
13
15
17
21
21
22
23
25
26
28
30

32
32
34

35
36

40

47
54

5.1 Issues Emerging from the Study
5.2 Main Recommendations
5.3 Summary

REFERENCES

APPENDIX: RULES TO PLAY THE C-JUMP BOARD GAME

60
63
66
67

69

TABLE

HOOND O AWNE

LIST OF TABLES

Types of board games

Type of movements in C-Jump

Programming statements in C-Jump

Observation results

Players comments

Field notes results

Response for the five evaluation measures (Question 1 to 5)
Comments from respondents (Question 6)

Expert interviews’ results

List of statements

PAGE

20
32
33

38

39
40

43
44

47
67

FIGURE

LIST OF FIGURES

Senet

Royal Game of Ur

Go

Types of board games
DiamondTouch by Mitsubishi
Entertaible by Philips

Front cover of the game box

Back cover of the game box

The game board

Programming statements in C-Jump
Playability

Clarity of rules

Educational value

Fun factor

Aesthetic appearance

Overall response of the five evaluation measures

PAGE

16
17
17
19
24
25
29
29
30
34
52
54
55
56
57
58

INTRODUCTION

1.1 Introduction

“The demand for programmers is likely to increase steadily earsy to come.
Furthermore, the programs that needs to be written will continuendease in
complexity, requiring higher levels of software skills” (Bandaressler, 1996). Research
has shown that the demand for software specialists in the moderooatyeues to
increase day to day. This is due to the fact that many orgamigadire seeking new

applications for computers and improvements to the software are already in use.

Educators are facing tremendous challenges in generating qualjsapmers to meet
the high expectations of the computer industry. IT undergraduates emdorense
pressure to become skillful programmers for the software indidagy programming
languages are being created for different purposes. The abilggogpam in different

languages is often a prerequisite for employment in many reputable companies.

The process of learning new programming languages becomes muashifetsre is a

good foundation on the fundamentals of computer programming.

“Once you learn one programming langauge the others are fasghyt@pick up as well”
(Dragontamer, 2005). Therefore, it is necessary to ensure that thrgraddate students
strictly meet the objectives set for their programming langsiagpurses especially the
first programming course taught at the high school. The introductorygonogng
courses at universities are often comprehensive due to the fadhénatare many
programming concepts, statements and syntaxes to be covered. Upon iogmnipket
introductory course, students are usually expected to demonstratarntieistanding of
the programming concepts and statements by writing complete pdgvany students
usually do not meet the expected outcome. Novice students often compddin t

programming is difficult to learn, irrelevant to their lives and boring.

This project is focused to investigate how games can be usesie@shanism to support
teaching and learning of programming at universities. There arefloesearch attention
to the use of games especially on both video and computer games inoedlicettings
but there is least exploration on the use of physical board games in learning.

Board games are usually played for a variety reason such as gaitiering, past time
and for educational purposes. There aren’'t much board games in the thatkate
solely created and aimed to teach basic computer programming. Althooignputer
programming board games like Programmer's Nightmare and RobaRakyist, but
these games require sufficient programming knowledge to play (Cohn, ZDBJ&mp is
a recently released computer programming board game, whichasd &nprovide basic
computer programming exposure to its players. This game could beasisedool to
teach basic programming to tertiary level students. Thereforepjbetive of this project
is to investigate the possibility and appropriateness of using thenp-board game as a

tool to introduce computer programming to tertiary level students.

The study will be conducted by collecting the necessary data usitajple research
methods and then interpreting the results to reach the consensus loénithet game
should be used as a tool to aid students to learn basic programmisity, Fire
participant observation technique will be employed by getting groupsi@érgs to play
the board game, while their verbal communication being tape recordgpitdthat, the
field notes technique will be employed by getting the observer to sigteficant
comments made by the participants. At the completion of the gaougnss will be
given a questionnaire to evaluate the C-Jump board game as an edutatiorepart
from obtaining responses from the students, a few lecturers that taangnt
programming courses will be interviewed to obtain their opinions of usiegboard
game to introduce basic programming to students. These resedmuigues are suitable
to gather both students and lecturers views about employing the C-dyngvide initial

programming exposure to novice students.

1.2 Background

Teaching and learning computer programming especially the fogtganming language
is a challenging task for both the lecturers and students respediesearch has proven
that educators contemplate various methods to make learning theréggamming
language a less painful experience. Novice computer programmingereaare often
bombarded with lots of new programming terminologies, concepts andjithesyntaxes
that scare them away.

One possible way to reduce the difficulty of learning the fishguter programming
language is to introduce the fundamentals of programming in a anthftin way before
the targeted group of students undertakes the first programming d¢enguarse. C-Jump
is a new innovative board game constructed to build the basic understahdomgputer
programming. It educates the basic commands of a programming languat as the
concept of variables, “if”, “else”, “switch”, “while” and “continuel’earners will be able
to see how the real computer program looks like. Although the C-Jutapgeted for
learners of age 11 and above, it has potential to be used as a tdobdade computer
programming to tertiary level students. However, knowing that C-Jusmp new
invention, issues involved in playing the game for educational purpose® dre
investigated.

It is assumed that the board game would be great help to the nimdeats when they
attend the formal lectures and labs of their first programmanguage course. There
would be fewer jargons as the board game covers variety of progrgmommands and
basic syntaxes. Students may not be able to write complete psydoaimthey would

have a good understanding about the common statements used in writing programs.

1.3 Special Terms and Words

C-Jump — Refers to the computer programming board game being
studied to determine if it could be used as an aid to teach
basic programming to tertiary level students.

Skiers (or pawns) — Refers to the games pieces of the C-Jump boaed A
game piece represents a player on the game board. In C-
Jump, players can control one or two game pieces of the
same color.

Game Board (or board) - Refers to the surface where the playershplagame.
Players would place the game pieces on specific position
of this board, depending on the rules of the game.

Space (or square) — Refers to a physical unit of progress on a gaineboa
delimited by a distinct border. In C-Jump, each of the

squares contains a programming programming.

1.4 Aims of the Study

The main aims of the study were to assess the practicatitgutability of using the C-
Jump board game as a tool to introduce computer programming toytetiar students
and to make appropriate recommendations concerning any flaws indicatdide by
findings. The specific objectives were:

- To examine whether the rules of the board game are clear to the players.

- To examine the appropriateness of the content presented in the board game.

- To examine whether the players enjoy the game.

- To examine whether the players gain any computer programming knewledg

while they play the game.
- To examine the presentation of the board game.
- To examine whether changes are necessary to the game’s dediga make

suggestions to overcome any problems encountered in the game.

1.5 Outline of Subsequent Chapters

Literature Review

The contents of this chapter can be divided into 2 broad categories: davass in
general and the C-Jump computer programming board game. First hhl§ ahapter
provides basic information about board games, i.e. what is a board gatosy, bi board
games, nature of board games and modern board games. The other hidfgpeeific
details about the board game being studied, i.e. history of C-Jump, boaeddgaign,

look and feel, game rules, scope and people’s views about this game.

Methodology and Findings

As the title explains, this chapter reveals information about th#nodology and the
findings. First, it provides details about the techniques used in gajhthe necessary
data for the study, i.e. methods of data collection, objective and tbenr@dy these
methods were chosen. Then, the collected data is systematically presentezbin tabl

Analysis

This chapter of the report provides details about the interpretatitre ohw data which
was collected and presented in the previous chapter (Chapter 3: Metlyodwoidg
Findings). First, this chapter discusses students’ view about then@+{Joard game and

then it provides lecturers’ opinion about using C-Jump for tertiary level students.

Issues, Recommendations and Summary

This chapter is divided into 3 different sections: issues emefging the study, main
recommendations and summary. The first section reports severas igbout the game
which was discovered throughout the study, the second section provides a few
recommendations to enhance the C-Jump board game and finally, thershisrt

summary about the whole project.

10

LITERATURE REVIEW

21 What is a Board Game?

Board game, refers to any game played with a premarked swietteounters or pieces
that are moved across the board. A History of Board Games defines dsaes are
defined as “any game played primarily on, but sometimes just agaoard of some
kind” (2003).

2.2 History of Board Games

Board games have been consistently popular, and the origins of boarddgdenkack to
ancient times. Over time board games spread to ancient EgypmceGamd Rome,

through Europe and eventually to the colonies of the New World.

The History of Sports and Games provides that the Senet (see Ejgoir the Egyptians
was one of the earliest board gank@own and it was being played before 3000 BC.
Senet was played by both the common and noble group of people and eventuadly it

believed to have taken on ‘religious significance’ (CanBooks, 2003).

Figure 1: Senet (CanBooks, 2003)

11

The Royal Game of Ur (see Figure 2) is the most famous board gaown, dating from
about 2500 BC (CanBooks, 2003). This ancient board game was discovered loys fam
archaeologist, Sir Leonard Woolley, in the tomb of the royal cesnetddr (CanBooks,
2003). Wikipedia reveals that most of the games excavated by LeormaitkyVcan be
found at the British Museum in London (2006).

Figure 2: Royal Game of Ur (CanBooks, 2003)

The Go board game or “Wei-gi” in Chinese (see Figure 3) is anddesicgame known,
as far back as 2300 BC that has maintain the same rules for tbageainy other board
game out there (A History of Board Games, 2003). The Go game lsvspmkad into
Korea, Japan sometime around the year 700 A.D. (A History of Board Games, 2003).

Figure 3: Go (A History of Board Games, 2003)

2.3 Nature of Board Games

Board games usually consist of boards, pieces, a system of mdlggagers. They have
been used as a pastime as well as a tool to teach children &jideenbdults over a

thousands years. There are many different types and classifications of boasd game

The Histroy of Board Games provides that there are two categofiboard games:
strategy games and racing games (2002). The object of thgggataes that are to gain
control of a larger board by using pieces to block or capture an oppopietes (The

Histroy of Board Games, 2002). Chess, Risk and Monopoly are exampléstet)ys

board games. The racing games are aimed to begin at a spetition the board game
and race along one or more paths to reach a specific goal fimeshdfore your opponent
(The Histroy of Board Games, 2002). Chutes and Ladders, Life and Pareliee
examples of racing board games. Other board games do not fit & ¢hesgories.

However, most are variations. For example, the objective of the baarel Glue is to be
the first player to solve a specific puzzle. Although the plagezsnot trying to get to a

specific location on the board, this is still a type of racing game.

Roland G. Austin in Greek Board Games claims that board gamgsragally based on
the ‘three primitive activities of man’. the battle, the raged the hunt (1940). The
object of the battle, the race and the hunt game is to chase the opgomanthe game
board, bring all game pieces to a specific end position on the board asdape from

the opposing team respectively (Austin, 1940).

Wikipedia have different classifiication of board games: gamassimulates aspects of
real life and games that do not imitate reality (2006). Poputaegadhat simulate aspects
of real life includeMonopoly which is a rough simulation of the real estate market;
ClueddClue, which is based upon a murder mystery; &k which is one of the best
known of thousands of games attempting to simulate warfare and ggospdlither
games that are not based on reality are abstract straiemgsdike chess and checkers,

word games, such &crabble and trivia games, such &avial Pursuit

Board Games

Figure 4: Types of board games

Board games are normally designed to involve luck, skill or both lucklaihd=sgure 4
shows the 3 classifications of board games. The cl&ssikes and Laddeis a pure luck
based board game that doesn’t require the players to make angrmedsriing the play.
These sorts of games are often targeted for children. Thergaameis methods of
introducing luck in board games. The most common is using the dice yusinadided).

In theSnakes and Ladderthe number on the dice is used to determine how many steps a
player move his or her token. Games l&arry! use deck of cards to create randomness
andScrabbleinvolves luck by requiring players to pick randomly pick letters.

The popularChessboard game is solely based upon skill. Most of the board games
involve both luck and skillMonopolycomprises both luck and skill as it uses the dice
and it requires some thinking. Players may be losing in a gdamehis due to luck
involvement, but a player with a superior strategy will win morerof Adult game
players usually find purely luck based games quite boring and peafeesgthat require
them to make some decisions. Table 1 gives a clear comparisorkoskilt and luck

and skill based board games.

14

Table 1: Types of board games (Board Fun, 2005)

Luck Luck and Skill Skill
dice, and cards, and doesn' | dice, spinners, and cards, but | spinners, or cards, and have
involve strategy. also include strategy and nothing to do with luck. Skil
choices. games take lots of practice

and include strategy.

Easiest to develop Harder to develop Most difficult to develop
Parcheesi, Candy Land, Life Monopoly, Sorry, Chess, Checkers, Go,
Backgammon Othello
These games usually are the These games consist of no
simplest to play, because Anything more complex than luck at all. Skill games
they don't require much spinning a spinner, rolling the | usually have many different
thinking. Most of the time dice, or picking a card, would rules, and give you many
they turn out as a race. fall under the catagory of luck | choices on where to move,
and skill. A luck and skill game | which piece to move, and
must require some luck or it how to win. Skill games
will fall under the category of a | usually include many pieces,
skill game. involve strategy, and require

concentration to play

2.4 Why Board Games are better than Electronic Games

Board games are generally more educational than video games. Jahrson of the
Virginia Cooperation Extension’s news release reports that Th8mersnan, a professor
of teaching and learning, suggests that parents should consider buyitrgditienal
board games, books and activity equipments over electronic games ifochitgren
(2001). The authors further reports that there are several guidairegsure positive
video gaming with young children and teens. Some of these guidelineddarsgtting up
the game equipment in a social setting, ensure the gamestaf#estar the desired age
level, limit the game play time to two hours and have “regularectiite” for other

activities.
Many publications allege that computer games especially sioulgames have high
educational value over other types of games. Nonetheless, these @fteneare too

complex. Saari (2004) states that “board games have one advantageomnmrter

15

games: players know the rules”. This implies that board gareesiraple as there are no
hidden rules. Whereas, in computer games the players are expeetgdrtsome input to
obtain some output “based on rules they can’t be sure of” (Saari, 20@themmwords,
nobody knows exactly know how the game engine is being designed unlesssone ha

access to the source code.

BoardGameGeek is an online resource providing lots up-to-date inforraatom games
and it contains an active discussion foruwhy Board Games are Better than Video
Gamesis one popular subject of discussion in the forum. Below are selepteibns
about board games from various game enthusiasts.
- Cheaper than video games
- Increase in value with time than video games that decreaseu@ &ter some
time
- Wireless or it can be played in the complete absence of eghower unlike
video games
- Easier to be designed than video games as it does not involve programming
- Bring people together, 2 or more players play the game together
- Non-violent
- Do not cause payers to strain their eyes in front of their monitors
- Compatible ever unlike other games that involve serious compatibility issues
- They are real as players can touch the components, deal cards and feel the tokens
- They are mostly quite
- Accessible to everyone as they do not come with specific ralikegd) and
18SX
- Do not cause Attention Deficit Hyperactivity Disorder (ADHD)
- Players to easily change the rules to suit a group, fix aiflayameplay, or just
make a game more fun easily.
- Handy and easily transported

- They are unique or completely different every time

16

25 Modern Board Games

In this modern era of technology, computers have profoundly impacted thigotral

board games, as most of these board games are now computerizeadny.ik¢her
computer games, board games can be downloaded, installed and played onl persona
computers. Similar to other online games, these board games cdregiayed online

against other players located remotely.

Many researchers seem to support the idea of computerizinghgxigiard games for
several reasons. Morrison explained that computer relieves tedséusf tealculating the
results of a battle (2005).

“By speeding up these tedious offline tasks, a computer allows playéocus more on
their strategy and actual game playing, and less time on tergant bean-counting at
the end of a turn” (Morrison, 2005).

In older board games, players might have read all the cards agdrnignever change

(Learn to Love Board Games Again, 2005).

Modern board games are designed differently. In modern board gamess maynpete
until the end of the game unlike older board games, where players droptbatgame

before it ends and wait for other players to finish (de Boer andteMa@004).

Nevertheless, most modern games are designed closely to obigandlgame. Often, the
physical look and rules of the game are well preserved but how gerplateract in the
game differs. For instance, instead of having the players to thewite, they are now
required to click at the dice on the screen. The dice is progratumaddomly display a

number ranging form 1 to 6.

The use of Artificial Intelligence (Al) allows modern board gsnto be more intelligent.

Some of the board games specificdding Arthur of designeRainer Kniziahas gone to

17

the extend of incorporating “intelligent electronics” that givedigack depending on

decisions made by player (de Boer and Maaten, 2004).

Clim J. de Boer and Maarten H. Lamer in their study of Electréwigmentation of
Traditional Board Games (2004) have proposed a conceptual framework for the
development of modern board games calletf-conscious game boardhe proposed
concept of a self-conscious game board is built around the idea of iratorgothe
ability to recognize the state of the game and to provide approfeedback (de Boer

and Maaten, 2004)fhe framework was tested by electronically enhancing an existing

board gameSettlers of Catamand the outcome showed positive results.

“Through a case study in whicBettlers of Catarwas electronically enhanced, it was
proved that the proposed concept of a self-conscious gameboard is viabspabld of
heightening a board game’s appreciation, particularly through dyndraiging of the
game board. The case study also showed player’'s positive receptioa whexpected
new possibilities to customize a game to their own liking. (de Boer and Maaten, 2004)”

The next generation of board games will blend the coolness of vides gath¢he social
approach of video games. Currently, research efforts are focused devilepment of
multi-touch interaction which will allow multiple players to toutie tgame board instead

of moving the physical game pieces or pawns by hands.

Figure 5: DiamondTouch by Mitsubishi (Block, 2006)

Mitsubishi have released an invention callidmondTouch(see Figure 5), which is not
really a touch screen because the display is coming from a vidgtpr, but several
players can touch the screen simultaneously (The Future of BaordsGa006). The

Mitsubishi Electric Research Laboratories as quoted by Block, 2006 claims that:

"DiamondTouch is front-projected and uses an array of antennas embeddedanch
surface. Each antenna transmits a unique signal. Each user hparateseeceiver,
connected to the user capacitively, typically through the useris Wiaen a user touches

the surface, antennas near the touch point couple an extremelyasmoalht of signal
through the user's body and to the receiver. This unique touch technology supports
multiple touches by a single user (e.g., two handed touch gestures)séinduishes
between simultaneous inputs from multiple users. DiamondTouch tablasaalable in

two sizes (32" diagonal and 42" diagonal display), while custom sizésshapes are

available on spec."”

19

Figure 6: Entertaible by Philips (Entertaible, 2006)

Besides DiamondTouch, there is another promising creation whichllig stiorking
prototype by Philips calle@&ntertaible (see Figure 6). Entertaible is a “30-inch LCD
screen embedded in a table displays the board and uses infrared &edstest how the
players move their pieces” (Board Games of the Future, 2006). r&@gerequired to
roll the virtual dice and move the clear cubes (pawns) around trensareording to the

arrows that shows where they can move (Entertaible, 2006).

2.5 About the C-Jump Board Game

2.5.1 Introduction

C-Jumpis a new released educational board game in the board game inithastry
introduces the fundamentals of computer programming to its playershéhe of C-
Jump isSkiing and Snowboarding Raeed it has a catchphrase that imp&ace down
a mountain, think like a computer programmiérhe goal of the game is to find the most
efficient way to “ski” down a mountain. Players are to imagendedves as either skiers
or snowboarders, racing with each other to reach the finish line. &thk s that the
player must make decisions based on common computer programming syatags
“if(X==1)" you can go down a certain path. The first player to mallgieces past the

finish line would be the winner.

The C-Jump was created and released in 2005 by a Computer Progrnaameel Igor
Kholodov. The initial idea of creating such game was triggeredhmlddlov in 1999
when he wanted to teach the basics of programming to his son. firecaup by my
son's interest and went to Toys “R” Us and the Discovery store hopifigd some
educational toys and was surprised there was nothing out there,’gsaiholodov
(Cohn, 2005).

The game is manufactured by the C-Jump Factory, a company baseadinire®,
Massachusetts. The company specializes in the manufacturing ofiedalcgames for
children, college students, and adults. Today, C-Jump is being commentdidcarssed
in many articles in popular websites such as Wired News, MSiggdelget and

BusinessWeek.com.
The game is designed for learners between the ages of 11 and abowsewnterested

to learn the basics of computer programming. The game can be pldlges minimum

of 2 players to a maximum of 4 players. It takes about 30 minutesntiplete a single

21

game session with 2 players and an additional player would incur aliéuiminutes of
extra time (C-Jump, 2005).

The game helps to develop the basic understanding of a complete coprpgtam,
formed by logical sequences of commands. Players will indirepthgp the basic
computer programming commands as they make their moves in the fhengame
teaches the players basic commands of programming languages shelbasic concept
of variables, if, switch and while. Regular players will becoramiliar with these

commonly used commands used in programming languages like as C, C++ and Java.

“By moving around the board, entering loops, branching under conditional and switch
statements, the players gain physical experience of a conppégeam. Understanding
of the internal action of a computer is essential to understandingseftaare is. Static
program causes dynamic process in the computer. By playing the players see this

process as physical and spacial motion. (C-Jump, 2005)”

The C-Jump website claim the following facts about the gamieis“@ame is not only
about teaching and learning: it's fun and entertainment for the wdnoiéyf skiing and
snowboarding is a perfect programming analogy; C-Jump game ifadéeme school

education; the game is based on the code of a real computer program. (C-Jump, 2005)”

2.5.2 Board Game Design

The C-Jump is designed based on the classic racing Snakes and lawhidrgame
where a player's game piece follows a track from stanntshf The players race with
each other to reach the finish line. It is built using the sinutarcept of having the
players to roll the die and then move the game pieces to somécsjmaztion on the
game board. C-Jump comes witlStart space at one corner of the game board and a
Finish space at the other far corner of game board. Spaces on the boahbwareas
squares. Instead of having a number in the spaces of the game bdarshaze has a

statement of a rule, borrowed from the C programming language subhb &f”, “else”,

http://c-jump.com/pagerules02.html
http://c-jump.com/pagerules02.html
http://c-jump.com/pagerules02.html

“switch”, “while” and “continue”. These statements are sequencddrio a complete

computer program.

The Snakes and Laddersontains snakes of different lengths, which could slow down
players from finishing the game. The “goto” statement in C-Juctgia similar way in

the sense that it changes position of the game piece from better to worse.

It is vital to understand how the players should make their moves @-duenp. Most of
the spaces in C-Jump contain statements using the “x” variabldefwe the player
proceeds, he or she is required to calculate the number of stegsamyng “x” with the
number rolled on the die. Lets us assume that the player's gaoeeipitocated on a
space containing the “x + 2” statement and the number shown on trediSince the
result of the addition is 6, the player would need to position the gasne pounting 6
locations from the previous space. If at all the piece ended on & spataining
conditional statement like the “if”, “switch” and “while”, the p&ywould need to roll
dice again to decide the next path. So, different statements h#eremifinstructions for
the movement of the game piece. Therefore, players are expectattthe board rules

carefully in order to advance the game correctly.

2.5.3 The Look and Feel

The game set comes with 1 game board, 1 die, 8 playing piecediffarént colors: red,
green, blue and yellow) and a copy of game rules. Since it corttes \pieces, players
are required to decide the number of pieces to be used in the gaméaVbe choice to

use either 1 or 2 pieces of the same color to represent each skier or snowboarder.

............

Computer PrT:gramming Board Game

e L T LR rm——

Figure 7: Front cover of the game box (C-Jump, 2005)

The game box comes with an attractive and promising look thaglacea sets a good
impression towards the game (see Figure 7). The game box ceady dlustrates that
theme of the game, which is Ski and Snowboard Race. The top right matrenbox is
presented with larger picture of a snowboarder in a race. Theft@otgon of the game
box is depicts a simple computer program that explains that the garelated to real
computer programming and it has an educational purpose. It provides akdéssary

information about the game: the title, targeted players, equipmehtttee website
address.

Race down a mountain, think like
a computer programmer |

. J;J!"!'f- W

-

Figure 8: Back cover of the game box (C-Jump, 2005)

24

The back cover ofhe game box (see Figure 8) provides a general idea about the board
game. Specifically, it dictates the basic rules of the gangethe educational benefits of
playing the game. The motto of the game “Race down a mountain, tken& tomputer
programmer!” is clearly presented at the top left corner ofjimee box and a snapshot of

the whole game board is displayed at the right portion of the back cover.

2.5.4 The Game Board

. i t
el W

T ._\

b 'i e
| F i) |]
-] :
e .
¥ e .II i =
rdra
e

a3
= | "*
= 4k e
il o
(0 e
i 3ok
T e el P
T
g
I L *
I,.." il)
: i | L‘!‘ i
e

Figure 9: The game board (C-Jump, 2005)

As you can see in Figure 9, the background of the game board demcte aview of
mountains filled with snow. The mountains are being used for the purpskengf and
snowboarding. In the board, there are many people caring out the astigkiing and
snowboarding from the top till the bottom of the mountain. There are addedries
such as the pine trees and mountain ranch that makes the desirgehatends suit the

theme, a ski and snowboard race adventure.

http://www.c-jump.com/gameview002large.JPG

The game board is presented with 145 spaces containing various proggammi
statements. These statements are linked with arrows thajuidié players to reach the
finish line. The statements actually form a large computer anogPlayers are supposed
to navigate their game pieces to the finish line by placing theepion the designated
spaces based on the number shown on the rolled die and the instructiopraivtbes

statement.

The spaces containing the programming statements come in 3 rdifteriers: blue,
orange and gray. The orange spaces contain conditional statementasstiah “if”,
“switch” and “while”. If the players end their movement of pieaesrange spaces, they
are awarded a free roll to determine the next path, which couler die therue or the
false path. There is no significant difference between placing the iecthe blue or
gray spaces. However, the blue spaces are sequenced to be thpadiireotthe finish
line and the gray spaces are statements omutb@ath of the conditional statements. The
arrows connecting the statements come in 2 colors: blue and orangblu&harrows
represent the direct or shortest path to the finish line whedreawange arrows are other

paths in the game.

2,55 The Rules

Skiers and snowboarders line up at the start location in the gantk Btayer rolls the
die and moves one of his or her skiers to new position by counting off thieenurh
spaces. Players can play the game with 1 or 2 skiers for eagdr.plf each player is
represented with 2 skiers, players may choose any of their gkigrsve. The first player

to move all his or her skiers past the finish line would be the winner.

Ultimately, it is best to follow the blue trail, which is repeated by blue arrows. The
blue trail is the direct path to the finish line. However, the, “iwitch” and “while”
statements on the game board may cause the players to foll@natige trail that may

cause delay in reaching the finish line.

26

The game board spaces contain different types of programming comrS8andisere are
different ways of counting the number of moves to be made to detetheneew
position of the skier. Some statements require the player to eefplacx’ in statement
with the number rolled on the die to determine how far the skier shoululabed.
Certain statements merely require the player to move accaalihg number shown on
the die. The conditional statements like “if”, “switch” and “whiktatement requires the
player to dice again, test the condition and move accordingly. Ottermsints such as
the “goto”, “continue” and “return” statement forces players to ositheir skiers at
specific locations on the game board. The complete set of instruthi@nsomes along
with the C-Jump board game can be found at Appendix section of this. ré&port
animated application of the game rules can now be downloaded fromeveb€itJump
(www.c-jump.com). Table 2 summarizes the game rules as to hoylaier should

move his or her skier for a particular type of statement.

Table 2: Types of movements in C-Jump

Programming Example of Type of Movement
Statement Statement

if if(x==1) The player is awarded a free roll; replace ‘X’
while loop while(x>0) with the number rolled on the die and then test
switch switch(x) the condition.
variable declaration | int x Move downhill accordingly to the number rolled
function declaration | int main() on the die.
open curly brace {
close curly brace }
label jump:
case case 1:
else
break
default
plus operator X+ 2 Replace X’ with the number rolled on the die,
increment operator | x++ perform the operation and move accordingly.
minus operator 6-x
decrement operator | x--
multiply operator X*X
divide operator X/X
goto goto jump Place the skier to the square labeled ‘jump:’
return return x The skier moves pass the finish line.
continue Place the skier back to ‘while’.

27

2.5.6 Depth of C-Jump

Table 3 illustrates types of programming statement found in C-Jitropnsists of 21
types of programming statements. In total, there are about 14hetaseon the game

board. The table also shows the number of occurrence of a particular type of statement.

Table 3: Programming statements in C-Jump

No Programming Example of Statement Number of Squares on the
Statement Game Board
1]if if(x==1) 8
2 | while loop while(x>0) 4
3 | switch switch(x) 1
4 | variable declaration int X 1
5 | function declaration int main() 1
6 | open curly brace { 10
7 | close curly brace } 10
8 | plus operator X+2 52
9 | increment operator X++ 11
10 | minus operator 6 - X 9
11 | decrement operator X-- 10
12 | multiply operator X * X 6
13 | divide operator X/ X 4
14 | goto goto jump 1
15 | label jump: 1
16 | case case 1: 3
17 | return return x 1
18 | else 4
19 | continue 1
20 | break 6
21 | default 1
Total 145

The following chart (Figure 10) clearly illustrates the freqyemmd programming
statements in C-Jump. It is obvious that many of the statemengsidometic statements

involving the plus (+) operator.

Programming statements in C-Jump

default

break

continue

else

return

case

label

goto

divide operator
multiply operator
decrement operator
minus operator
increment operator

plus operator

Programming Statement

close curly brace
open curly brace
function declaration
variable declaration
switch

while loop

if

0 5 10 15 20 25 30 35 40 45 50 55

Frequency

Figure 10: Programming statements in C-Jump

2.5.7 People’s Views about the C-Jump

There seems to be contradicting views about the educational uséuaffC-Some people
find it as a worthwhile innovation whilstthers do not see the point of having one. The

following opinions are quoted from various sources on the Internet.

“This is a smart and interesting way to teach ‘simple compartmgramming syntax’ to
students. (Smith, 2005) ”

“I don't really see a whole lot of value in teaching children thraingg method as it
introduces the concepts pretty abstractly and in a way that representative of a real
computer program. Furthermore you're not *doing* anything other than adding and
subtracting from the die roll so | do not believe many childrenredlly see any point to

it (at least in Monopoly you're bankrupting your friends and in Mouse yioaget to set

off the cool Goldberg device). (BoardGeek.com, 2005) ”

“Wow, I've gotta say, as a programmer, this seems like a great way to introgunos-m

geeky friends and wife to the joy of programming, and kids too. (Deanh, 2005)”

Below are selected concerns and opinions by some commentators opCrjot®d from
JWZ (2005):

- “Xisn't quite a variable. Take a look through the rules.”

- “Great idea, but not well done. Look at the numbers in the if andlssiatements

here. The first two cases can't be reached.”

- “Where's the danger? A game without danger is no fun at a#icéis all well and
good, but what players really want is to avoid going to jail or toresdhe

community chest or pawn the most valuable properties. Introduce sonomgysec

http://www.c-jump.com/pagerules02.html

concepts. Get kids used to the idea of a buffer overrun (skiing offf2),cpoor

input validation (forged ski ticket?), and other things ...”

“Great idea, but not well done. Look at the numbers in the if andtssiatements

here. The first two cases can't be reached.”
“Where's the danger? A game without danger is no fun at adicéis all well and
good, but what players really want is to avoid going to jail or toresd¢he

community chest ...”

“How does "roll a die and do whatever the game tells you to" fyuadi a fun

game?”

“Does the game ever halt?”

“The scheduler worries me: With multiple skiers of the sawier on the board,

players may choose any of their skiers to move."

“... 1think i just fell asleep reading the rules.”

31

METHODOLOGY AND FINDINGS

3.1 Introduction

Several research techniques were employed to gather the ngdekwanation for the
study of C-Jump. Data was collected in various forms by observingnssuglaying the
game, tape recording their comments, making own field notes, distglguestionnaires
to get feedback from the players and also interviewing educatorshdve taught
programming courses.

3.2 Participant Observation

Twenty IT undergraduate students who were enrolled for the firstgmmoging course,
CSEB114 Principles of Programming at Universiti Tenaga Nasi@idlTEN) were
scheduled to play the game while their reactions and gesturebearg closely
monitored. Objective of the observation was to perceive any interessngs involved
in playing the game. There was only 1 C-Jump board game avaitailifesfing. Due to
this, a simple schedule was prepared to get different groups ehstud play the game.
The C-Jump could only engage 2 to 4 players in one single gamensessil therefore
the participants were divided into 5 groups with each consisting of 4 players.

During the exercise, actions and gestures of each of the groupemerab carefully
observed. Each group observation result was tabulated into 3 partgaadymid game
and end game (see Table 4). Indirectly, the observation was usehdtite any
observable pitfalls of the game.

Table 4: Observation results

Group 1

Early game:

- Only 1 skier per player.

- Players directly started to read the instructions.

- Repeatedly read the instructions.

- Continuously added the value of the previous x.

- No clear idea on how to start the game, restarted the game

several times.

- Players looked frustrated.

Mid game:

- Players played very inconsistently, sometimes evaluating the

conditional statements halfway through every move and
sometimes only when the skier was placed there.

- One of the players did place his skier outside the provided

squares. It seemed that the orange arrow was not noticeable.

End game:

- Players counted backwards when the number of steps was

big, thinking it is similar to the classic Snakes and Ladders.

- Skiers already at “return x” but player still continued to

playing the game.

Group 2

Early game:

- Only 1 skier per player.
- After placing the skier on the squares, players made attempts

to understand what the statements meant by reading the
instructions.

Mid game:

- Player kept evaluating the conditional statements halfway of

every move.

- Players look excited.

End game:

- Players not sure how to proceed when their skier was placed

on the “return x” statement. They were confused about where
is the “ski base” when they referred the instructions for
guidance.

Group 3

Early game:

- Only 1 skier per player.
- First, players continuously added the value of the previous x.
- Then, players made moves according to the number shown

on the dice, disregarding the statement in each square.

Mid game:

- Player kept evaluating the conditional statements halfway of

every move.

- Players look excited.

End game:

- Players counted backwards when the number of steps was

big, thinking it is similar to the classic Snakes and Ladders.

Group 4

Early game:

- Only 1 skier per player.
- Players immediately read the instructions to know what the

statements meant.

Mid game:

- Player kept evaluating the conditional statements halfway

through every move.

End game:

- At the “return x”, players still continued to roll the dice to

obtain a 1 to finish the game.

Group 5

Early game:

- Only 1 skier per player.
- No clear idea on how to start the game, restarted the game

several times.

- Players look puzzled.

Mid game:

- Player kept evaluating the conditional statements halfway

through every move.

End game:

- Players repeatedly read the instruction to know what “return

X" means.

3.3 Tape Recording

Participants’ verbal communication while they were playing timeegaras tape recorded.
The purpose of tape recording the game session was to ensureethatiegle comment
made by each player was noted without fail. Certain commentshévat frequently
occurred were taken as more important than if it only rarely medtuiThe number of
times a particular comment or similar was counted and comni&iteutns out to be the
greatest was then be identified as the greatest problem igathe. Player's verbal

comments while playing the C-Jump board game are showed in Table 5.

Table 5: Players comments

- Why do we have 2 pawns of the same color?

- |l am ready to bet what we did is all wrong.

- The instructions are not clear.

- The instruction doesn’t explain how we should move.

- We don't have any clue about how we should play the game.
- Do we continue adding the x value?

- What do return x actually means?

- | feel something is wrong somewhere.

- Where is ski base?

- How do we start, any tips for beginners?

3.4 Field Notes

This method is about making own notes against the comments made bgmmaheach

group while they play the board game. The objective of making ownrfatéss while the

participants played the game was to identify any significantnoemts that may not be
the most frequent but gives an insight of the game studied. Thenbtigdd results are
shown in Table 6.

Table 6: Field notes results

- The game is teaching us something, before this we never know what is x+2.

- We only learn basic arithmetic from this game.

- Players have limited things to do in the game, so there should be more options.

- This game is boring.

- We can't see the motive of playing this game; we are not sure where are we heading.

- How does skiing relates to programming?

- How can we learn C++ and Java from this board game?

- This game is useful for people who are in the process of learning programming. It will help

beginners to visualize how certain programming statement work. I.e. how the x++ statement
works.

- The arithmetic statements of C-Jump should be replaced with other types of statements.

3.5 Questionnaires

Upon finishing the game, every participant was requested to comaletet of
guestionnaire consisting of several statements relating to énergl areas: playability,
rules, learning value, fun factor and aesthetic appearance of tlee §hmobjective of
the guestionnaire was to obtain students’ feedback towards the C-Juntp damae
specifically on the 5 mentioned areas. These statements wdrasugee main instrument
in obtaining a good insight about what students feel about the gameedtimsgue was
also useful in obtaining personal views from the participants edlpecaan those that

were less expressive during the game session.

The following statements were given out to the participants eftapleting the C-Jump
session. Participants were asked to evaluate the extent to \kkigchagreed with the
statements on a scale from 1 to 5 (1, strongly disagree; 2, tatidagree; 3, neither
disagree nor agree; 4, tend to agree; 5, strongly agree). Inoad@itgeneral comment
section was included for any additional suggestions or comments.

- Statement 1: C-Jump is playable board game.

The above statemenf the questionnaire deals with the playability factor the garhe. T
objective of this statememias to determine if C-Jump is accepted as a game that can be

played by people.

- Statement 2: Rules of the C-Jump board game were clear enough for ptayers t

understand how the game should be played.

The above statememtf the questionnaire relates to clarity of rules of the game. The
objective of this statementas to determine whether the rules of the board game were

unambiguous and easily understood by the players.

- Statement 3: | have learnt the basic programming concepts and syntaxes from

playing the C-Jump board game.

The above statememefers to the educational value of the game. This statemant

acquired to measure the programming knowledge gained from playing the game.

- Statement 4: C-Jump is an interesting and fun board game.

The above statemeant the questionnaire is about the fun factor the game. This statement
was aimed to investigate whether the players were having fue wialy were playing

the board game.

- Statement 5: C-Jump board game looks attractive and appealing to me.

The above statemergfers to the aesthetic appearance of the game. The objecthis of

statementvas to determine the consensus about look and feel of the board game.

- Statement 6: Please write in anything else that you would like tost@lbout the

C-Jump board game.

The above is an added statemienthe questionnaire, which was aimed to take note of
any other information related to the C-Jump board game that theiganti wants to
highlight.

Responses for the first 5 statements are tabulated in Table 7m&ae score and
standard deviation are also calculated and displayed accordingly. résa#ts is referred
and discussed in great detail in the following chapter (Chapternalygis). Other
comments made by the respondents are displayed in Table 8.

37

Table 7: Response for the five evaluation measures (Question 1 to 5)

No

Question

1
(strongly
disagree)

2
(tend to
disagree)

3
(neither
disagree
nor
agree)

4
(tend to
agree)

5
(strongly
agree)

Mean
Score

)

Standard
Deviation

(o)

C-Jump is
playable
board game.

4

3.65

1.19

Rules of the
C-Jump
board game
were clear
enough for
players to
understand
how the
game should
be played.

2.75

1.22

| have learnt
the basic

programming
concepts and

syntaxes

from playing
the C-Jump
board game.

11

3.65

0.79

C-Jump is an

interesting
and fun
board game.

3.8

0.93

C-Jump
board game
looks

attractive and

appealing to
me.

3.55

1.02

Table 8:

Comments from respondents (Question 6)

Question

Participants Response

Please write in anything
else that you would like
to tell us about the C-
Jump board game.

- C-Jump should be made more comprehensive and
complicated if it will be used by undergraduate students.

- The game rules are confusing but it is good for students to
start learning computer programming.

- C-Jump features the basic code programming knowledge
which will definitely help to increase the knowledge of
students.

- The theme “skiing” won't attract much attraction.

- Aninteresting game that teaches programming but it isn’t
suitable for people in Malaysia, as we are far behind compared
to others.

- Itis not suitable for children below 11 and it is suitable for
student age 12 above and for those have programming
knowledge.

- C-Jump board game must have a complete set of rules so that
it can be played by both children and adults.

- Atfirst, | couldn’t understand the game and it appeared boring
to me but later when | understood it, its fun!

- Need to make this game more thrilling and interesting with
various options.

- The game finishes very fast.

- ldon’t understand the main concept of the game.

- A good and challenging game. We didn't know at first how to
play it but after been taught, it was fun and interesting. We

should play these games more in the class routines.

- The game was enjoyable but would be more interesting if the
instructions were clear.

- The game is like a maze for those who just started learning
programming.

- The game is fun but the instructions are confusing.

3.6 ExpertInterviews

The C-Jump board game is being carefully examined to see théilmyssf using it as
tool to aid students to learn basic computer programming. Besidesriggt feedback
from the novice students, it was fairly important to obtain whatetterers teaching the
programming course feel about using the C-Jump in their classroovesle€Eturers
teaching programming languages at UNITEN were interviewednBtine interview, the
C-Jump board game was first played by the lecturers and theollineirig questions

were answered. Lecturers’ responses for the five questions are presented th Table

- Question 1: What are some of the frequent problems faced by studentghaking

first programming course?

The above question was aimed to identify common problems experiencéddbpts
taking the first computer programming course.

- Question 2: What is your opinion about using a board game to introduce basic

computer programming to students?

The above gquestion was aimed to determine lecturers’ general opboon @ésing a
board game as tool to support the traditional methods of teaching prog@gno
students.

- Question 3: What is your opinion about using the C-Jump board game to

introduce basic computer programming to students?

The above question was posed to determine lecturers’ personal opinion abguhes

C-Jump to introduce programming to tertiary level students.

- Question 4: What are your comments about the learning content (programming

statements and the syntax) provided in the C-Jump?

The above question was aimed to determine the appropriateness of the bas

programming content covered in the game.

- Question 5: What are your suggestions to improve the C-Jump board game so it

could be used as tool to introduce programming to tertiary level students?

The above question was raised to determine lecturers’ suggestionsduoertipg C-Jump

board game as an effective tool to introduce basic programming to IT undergraduates.

41

Table 9: Expert interviews’ results

Question

Response from the Lecturers

What are some of the
frequent problems faced
by students taking the
first programming
course?

L1: Students face problems to understand logics and syntax.

L2: Students face problems in understanding the programming
concept. They don't know how to learn programming
languages. They just read their notes and they don'’t try the
exercises. They can't apply what was taught in the class when
they are given problems to be solved.

L3: Students’ main problem is to solve problems and to come
up with the algorithm. They also cannot visualize how the
syntax works, for instance how a loop executes in a program.
They do not know where to start in programming and they have
problems in memorizing the syntax.

L4: The students do not understand about problem solving.
Students don’t have good knowledge of how to solve the
problem. Some of maybe good at the syntax but knowing the
language doesn’t help them to solve any problem. We also
have a group of students who cannot learn the syntax easily;
they find the language itself is difficult. They are carried away
with notations, semicolons, quotations, punctuations. Currently,
a lot of our students have difficulties with the syntax.

L5: We are responsible our selves as educators to follow the
syllabus, and we right away try to teach them coding instead of
programming. As a result, the students with the characteristic of
being so visual are forced to imagine something abstract i.e.
the coding system, syntax of the language, declaration of the
variable, how the computer organization works, why you need
declaration and etc. Most of the programming books start with
“Hello World!” and students tend to wonder what that actually
means. Instead of explaining programming, the book explains
that the printf statement prints, scanf reads data and then it will
print “Hello World!” at the end of this. The students are then lost
into syntactical events i.e. semicolon, braces, quotes, etc. The
students are confused between programming and coding which
makes them to dislike programming. | believe it is because of
our approach, we must teach them programming before coding.

What is your opinion
about using a board
game to introduce basic
computer programming
to students?

L1: Game is an interesting tool to attract the interest of students
to learn programming. It is a good start to introduce anything
learning process. It is a good tool to improve learning.

L2: It can be done outside of formal lectures hours or we can
have it as a quiz or something in groups, who wins faster will be
the winner. It can be used to make learning more interesting but
it is just a supplementary and optional thing, which can’t replace
the formal lectures. It can probably get the interest of students
who dislike programming to entice them in learning.

L3: Game is a good alternative for teaching as compared to the

42

PowerPoint presentations. It would be more fun to use a game
to teach programming.

L4: It is a good idea but we must have proper tools and
infrastructure. We must make sure that the game has good
regulations or rules. Anyhow, we can't standardized the way we
teach because some students like games and some may not
like to play games to learn things; students who do not like
games may prefer the formal education. Games are only meant
for a different target group who love to play games. So, you can
use that advantage of people who like to play games to instill
knowledge that will be beneficial to them in the education
system. However, students may not go through certain
sequences or they may take shortcuts to reach the final
finishing line. Students maybe keen in moving because they
want to win and probably they did not really observe the steps.
Students may just want to win the game but not to learn from
that game.

L5: | haven't seen a good game which can teach programming.
| don't play game anyway so | am totally illiterate in terms of
games. | am from the older generation, | never believe that and
| don't like it.

What is your opinion
about using the C-Jump
board game to introduce
basic computer
programming to
students?

L1: Generally, 1 would very much encourage the use of this
game to introduce programming. Perhaps, the C-Jump could be
used during the first week of the programming course. Usually,
we will not cover much in this week. This is to create the
interest in the students despite giving them basic idea of what
programming is all about. If C-Jump is played regularly, each
statement presented in the game will automatically be installed
in the players mind. For instance, the player will know how a
switch statements work. Students will learn the basic
programming statements by playing the game.

L2: The person who loses in the game would learn more than
the person who wins the game. C-Jump doesn’'t meet the
objective of the game, which is to get all players to learn the
fundamentals of computer programming by playing the game.
Players could possibly escape all the conditional statements in
the game. Students playing this game must be guided by a
teacher. These students may play the game wrongly. They
might also interpret the programming statements incorrectly
and may then carry the wrong interpretation with them.

L3: The game is presented very well. After playing the C-Jump,
| realized that it is not a good game to introduce programming
to students. It will confuse the students even more. Students
will only learn basic arithmetic i.e. calculating x+1 and x-1. Even
the if statement doesn’t teach much. | can’t see the flow of
evaluating the conditional if condition as true or false. In both
ways, the players get to proceed in the game without thinking
much about the difference of evaluating the ‘if statement’ as
true or false. There are only a few while statements and if the
players crosses over these while statements, he or she will not
learn anything about the while statement. The learning of

43

programming concepts comes from the game instructions and
not from the game itself.

L4: C-Jump might not be suitable for students at the university.
We got to ensure that they have more understanding about the
programming. Students may end up playing the game without
going through certain syntax at all. For instance, someone who
never got to play a while loop. Students may be playing this
game several times but coincidently never got to learn ‘while’
and therefore the lecturer cannot penalized him for not learning
it because he simple never got the chance. So, it is important to
make sure that everybody learns everything in a standard way.
So, this board game might not be so appropriate. Nevertheless,
this game can be played by students before they take the
programming course. It cannot be part of the programming
course or syllabus. It could be a pre-introductory programming
to students. Students will be able to expose themselves about
how a computer may behave, what it means by branching, what
it means by looping, and what does a particular statement
mean. So, C-Jump is useful in giving the new students a good
start on programming before they actually attend the formal
lectures.

L5: I don’t recommend it because C-Jump is enforcing coding.

What are your comments
about the learning
content (programming
statements and the
syntax) provided in the C-
Jump?

L1: C-Jump is specifically focuses on the C language. The
game covers C programming syntax. C-Jump will help students
to understand the logic (flow of the statements) i.e. if(x==1) and
operators i.e. x++. x++ could be a trivial arithmetic statement
but someone who has zero knowledge on programming will
take time to digest it.

L2: The statements are simple and would suite the beginners.
There lots of arithmetic statements.

L3: C-Jump consist of very basic programming statement i.e. int
declaration, if else, switch and while. C-Jump should introduce
functions to its players. Majority of the statements covered in C-
Jump are basic arithmetic and many statements only require
players to move down accordingly to the number rolled on the
dice.

L4: It comprises of programming syntaxes. Players are required
to identify what the syntax means. l.e. ‘x--’ is a C program
syntax and not a normal arithmetic symbol. By learning this
syntax, the players will be able to know what is meant by --. It
will actually help players to learn some syntax. Players will
never see these statements like x++ anywhere else except in
the C program. So, players will be exposed to this ++ symbol
even before he or she go into the programming class. Anyhow,
players will only learn about the syntax and not about any
concept. There is some amount of learning for a new comer.

The purpose of this game is to introduce basic programming
concepts. It is quite comprehensive for a game that teaches
basic programming concepts. It covers variables, arithmetic

44

operations, the three control structures (sequence, selection
and repetition) and jump statements (goto, continue and break).
If students who really play and explore it with proper
understanding of the correct rules, then they should be able to
learn something. Programming is about both arithmetic and
logic, and so it is C-Jump.

L5: It is very primitive and very simple to learn. Each time you
throw the dice, it will change the variable and that is confusing
and does not really happen in the context of programming.
Association of throwing the dice is an assignment statement to
assign variable x, and there is only one x. Once you declared
an initialized variable, change of value of that variable will be
depending on the course of the program. So, once the variable
is initialized to a value, statements like x+land x-- should
change the value and not the dice.

What are your
suggestions to improve
the C-Jump board game
so it could be used as
tool to introduce
programming to tertiary
level students?

L1: This game should first be tested with 2 different groups of
students, i.e. students having some programming knowledge
and students without any programming knowledge. After that,
see if they have mastered the logics or the syntax. Maybe we
should add different syntax in the game. For instance, adding
nested if statement, for loop, do while, etc.

L2: Need to rearrange the statements on the board to ensure
every player gets a chance to evaluate some conditional
statements. Add more statements i.e. assignment statements,
nested statements, etc. Having a computerized board game
that could be monitored and regulated. If students play it
wrongly, then it should hint the students by giving a beep
sound. If the students do not follow the correct flow of the
program, then we could inform them. The game should be
guided to ensure the students get to understand the concepts
correctly at the first time itself or not it would be staying with
them forever.

L3: First we need to improve the instructions. For instance, it is
unclear of what the colors of the squares should mean. | would
suggest rearranging the game instructions by separating them
into two parts, how to play the game and what the syntax
means. Then we need to reduce the arithmetic statements in
the game and replace them with other types statements. Add
function calls in the game. Have 1 small main function that calls
other functions that returns a value.

L4: Not a bad game but it is just that the rules are not clearly
stated, maybe they should state with more examples. Anyhow
the virtual tour which is downloadable from the website is
helpful in understanding how to play the game. If we were to
use this game for university tertiary level, then your assessment
cannot be based on exams. For tertiary level education, we
normally use exams to assess if the students have learned
something. When we have an exam, it is difficult to make sure
that the student has learned everything using a game. For
instance, how do you ensure that the student have really
learned about the ‘default’ statement? There is a possibility of

45

not getting to place the skier on the ‘default’ statement. This
may be possible by having a computerized board game where
somehow every player is maybe forced to go into at least 1
sequence structure, 1 selection structure and 1 repetition
structure. The game should be able to keep track of the number
of times each player has entered a loop, if else structure, etc.
Having done this, you can somehow program it in such a way
that the player has experienced all the basic aspects of
programming while playing the game.

L5: We have to think of some other game which will be able to
teach programming instead of coding.

ANALYSIS

4.1 Students and the C-Jump board game

4.1.1 Students’ views on the ability to play the game

Figure 11 shows students responses towards the ability to playdhe©Cboard game.
The mean score of this statement is 3:65.19. Clearly, the majority of the students
(78%) agree that C-Jump is a playable game. From the observatios of the students
immediately started to play the game and some were repeatediyng the instructions
to learn how to play. Anyhow, the majority of the groups could play theeggthough
most of them were not playing correctly. Sixteen per cent oftingents claimed that
they neither disagree nor agree that the game is playable.6@nlgisagree that it is
playable. Perhaps, these were the students who looked very puzzled der@glamp
session and patiently waited for other participants to start dinee g These finding
indicates that generally students would be able to play the ganeafdehey were to play

it incorrectly.

C-Jump is a playable board game.

(strongly disagree)
3% (tend to disagree)
3%

(neither disagree nor
agree)
16%

(strongly agree)
34%

(tend to agree)
44%

Figure 11: Playability

47

4.1.2 Students’ views on the clarity of the game rules

Figure 12 shows students response towards the clarity of the geemeTthe mean score
of this statement is 2.75 1.22. About half of the students (48%) agree that the rules
were clear enough for them to understand how C-Jump should be playedpé&hicgnt

claim that the game rules were ambiguous. One of the students commented that:

The game rules are confusing but it is good for students to start learning
computer programming. C-Jump board game must have a complete set of rules so
that it can be played by both children and adults.

Student

Some students (22%) neither disagree nor agree that the rukesleer. Perhaps, these
students find that are some parts of the game rules arearidaothers need to be
improved. From the observation, it was clear that some of the ingtrsicire rather
confusing. For instance, almost all the students were not sure abotn powceed with
the game when their skiers were stopped at the “return xfretate The instruction were
misleading due to the students interpreted it differently. Sonteeat testarted the game

and some just finished the game.

Despite that, most of the comments noted from the recorded tapegateve comments
related to the games instruction. Although majority of the studemisttat the game
rules are clear, this finding reveals that some of the instngtire rather confusing and

should be revised.

Rules of the C-Jump board game were clear enough fo r players
to understand how the game should be played.

(strongly agree) (strongly disagree)

A 5%
18% (tend to disagree)

25%

(tend to agree

0,
30% (neither disagree nor

agree)
22%

Figure 12: Clarity of rules

4.1.3 Students’ views on the learning aspects of the game

Figure 13 depicts whether the students have learned the basic praggaconcepts and
syntaxes from the C-Jump. The mean score of this statement i .85 Majority of
the students (74%) agree that they have either directly or itigitearnt the basics of

programming from the game.

Very few students (5%) claimed that they didn’t gain any basigramming knowledge
from the game. Perhaps, these students were just playing to thie game or the game
covered only very trivial programming content. Twenty one per cenhefstudents
neither disagree nor agree that they learnt anything from three.gAt the general
comment section of the questionnaire, a student highlighted that the©should be

adjusted to suit the university students.
C-Jump should be made more comprehensive and complicated if it will be used by

undergraduate students.
Student

49

From field notes taken, one of the students commented that:

We only learn basic arithmetic from this game.
Student

This finding provides that C-Jump is able to stimulate some basigrgmnming
knowledge while the students play the game. Anyhow, it is apparentt tlEaguite
primitive and should be enhanced further to match the expectation of adiety
students.

I have learnt the basic programming concepts and sy = ntaxes
from playing the C-Jump board game.

(strongly disagree)tend to disagree)

t |
(strongly agree) 0% 5%

14% (neither disagree nor
agree)

21%

(tend to agree)
60%

Figure 13: Educational value

4.1.4 Students’ views on the fun factor of the game

Figure 14 depicts whether the C-Jump was interesting and fun ttuttents. The mean
score of this statement is 3:8).93. Seventy five per cent of the students found the game
interesting and was fun to play with. During the observation, it wasdrtbat a number

of the students were excited throughout the game session.

At the general comment section, one of the students commentedetigaintie is fun only

if the players are able to understand it.

At first, | couldn’t understand the game and it appeared boring to me but later
when | understood it, its funlVe should play these games more in the class
routines.

Student

Only 5% of the students disagree that it was interesting ana filnemn and 20% neither
disagree nor agree with the statement. f#seilts of the finding indicasghat C-Jump is

generally an interesting and fun game to its players.

C-Jump is an interesting and fun board game.

(strongly disagree)]
0% (tend to disagree)

5%

(neither disagree nor
agree)
20%

(strongly agree)
33%

(tend to agree)
42%

Figure 14: Fun factor

4.1.5 Students’ views on the aesthetic appearance of the game

Figure 15 represents students’ opinion about the aesthetic appeardneeyaie. The
mean score of this statement is 3:6502. It is clear that majority of the students (72%)
found the game attractive and appealing. Only a small number dtittenss (7%) found
it otherwise. Twenty one per cent of them neither disagree nee #Huat it was attractive

and appealing.

51

Even though C-Jump is targeted for younger players (age 11 and abeu#} of the
survey reports that it is attractive and appealing to undergradtiatents (adults) as

well.

C-Jump board game looks attractive and appealing to me.

(strongly disagree) (tend to disagree)
1% 6%

(strongly agree)

21% (neither disagree nor

agree)
21%

(tend to agree)
51%

Figure 15: Aesthetic appearance

The following chart (Figure 16) provides that mean response for eable category of
evaluation by students. Overall, the responses were quite positive.umhéadtor
category were rated the highest, with a mean score of 3.8 + 0.93owWést-scoring
category was clarity of rules, with a mean square of 2.75 = 1.22eTasglts generally
indicate the best aspect of the game is that it is fun anestitey to play with and the

worst aspect of the game are the game rules which are rather confusing or itesomple

Students' Views on the C-Jump Board Game

5

4 3.65 3-65 38 3:55
(]
2, 2.75
(&
9))]
S 2
v
]

1

O T T

Playability Clarity of Rules Educational Fun Factor Aesthetic
Value appearance

Figure 16: Overall response of the five evaluation measures

4.2 Lecturers and the C-Jump board game

4.2.1 Lecturers’ remarks about common problems experienced by students

learning programming

The lecturers generally agreed that the students face sehatkdnges in learning their

first programming course. Interestingly, they have different opinions on this issue.

Some of the lecturers explained that the students face difficuitisualizing what was
taught in the class. The students are expected to imagine somethjrapstract, which

they have never experienced before.

They cannot visualize how the syntax works. For instance, how a loop executes
a program.

Lecturer

Most of the lecturers claimed that the students do not know how pootitem solving
In other words, they can’'t breakdown a given problem into smaller pagsstudents are

carried away with notations, semicolons, quotations and punctuations.

Students don’t have a good knowledge of how to solve the problems.

Lecturer

Lecturers’ comments also indicated that many students faceuttifs with the syntax or
coding. They have problems in memorizing and applying the syntax. Ohe tcturer
reported that many students merely read and memorize the nobtesitwdbing much
practice on writing programs. As a result, they can’t apply #m@wledge when they are

given some problems.

One lecturer generalized that the students are confused betweesmprigg (problem

solving) and syntax (coding). He strongly suggests that the lextsi@uld first teach

and focus on programming instead of coding. It seems that, by doing smtstwdenot

be lost into syntactical notation like semicolon, braces and quotes.

4.2.2 Lecturers’ views about the use of games in teaching programming

Most of the lecturers generally agreed with the idea of usingeg as an alternative tool
to teach programming. Many of them claimed that the game ifeativee tool to attract
the attention of many students to learn and gain something.

Majority of the lecturers feel that the game is just a suppigary to the lectures even
though games can be used to make learning interesting. Formaéseshauld still be
the main medium of instruction and the educational games should be plagete of
these formal lectures hours. A lecturer commented that it is a good tdwatd attention

of students who dislike programming.

It can probably get the interest of students who dislike programming teenti
them in learning.

Lecturer

One lecturer has stated that we can't formalize the idea iofj ugames to teach
something. This is due to the fact the some students may not hkesgand may still

prefer the formal education over learning while playing.

Another lecturer responded that he hasn’t seen any good game thatusedhe teach
programming to students. Moreover, he totally disagrees with theofdesing games in

education. He never believed that it would be an effective approach to enforce learning.

4.2.3 Lecturers’ comments about using C-Jump to teach basic computer

programming

The lecturers had different opinions about the use of C-Jump as @ taidl kearning
programming at tertiary level students. Some of the lectueemmmend the use of C-
Jump at the university because it is a game, and games eenh thitr interest of students
to learn something. Anyhow, they propose it to be played by students tefdi@mal
lectures. Perhaps, it can be used during the first week of thedeiceé. when students are
being introduced to programming. Students playing the C-Jump before adtethei
formal lectures will be able to expose themselves about how a cemipehaves,

branching, looping, and what certain programming statements mean.

Some of the lecturers encourage the use of C-Jump upon believin§ tthatstudents
were to play it quite frequently, they will somehow learn somerproming statements.
For instance, they will learn how a switch statement works. @aeirer somewhat
agreed it to be used at tertiary level but highlighted thataheegsession must be guided
by someone. This lecturer is concerned that the students may noying laorrectly
or they may be interpreting the statement wrongly. The studententaup confusing

themselves even more if they are not assisted in playing C-Jump.

Other lecturers discourage C-Jump for undergraduate students. &imaytitht it will
confuse the students. Moreover, it doesn’t teach much. It mainly covgcsanghmetic
like x+1 and x-1. One lecturer explained that we can’t use C-Jompnidergraduate
students because we can’t assess them due to the possibility g#ttiog to learn all
statements in the game. There are only a few differentstats. For instance, there are
very few “while” statements and if the player crosses ovesetseatements, he or she will
not learn anything about the “while” statement. One lecturer featshe students would
be learning the programming statements by reading it from tine gastructions which

maybe equivalent to reading from notes.

The learning of programming concepts comes from the game instructions and not
from the game itself.

Lecturer

Another lecturer objects the use of C-Jump for tertiary leuelestts because it enforces
coding rather than programming. The game focuses more on the sgstaadi of

problem solving.

4.2.4 Lecturers’ comments about learning content covered in the C-Jump

Majority of the lecturers claimed that the C-Jump mainly cougasic arithmetic
statements. Anyhow, one lecturer did stress that the “x++” rbiglttivial statement, but
it is something very unique and would be a worthwhile knowledge for somdunéas

zero knowledge on programming.

Some of the lecturers reported that the game covers enough foealyzt teaches basic
programming statements. It covers variables, arithmetic operatiobasthree control
structures (sequence, selection and repetition) and jump stategeioiscontinue and
break). The lecturer added that if students really play and exiplergame with proper

understanding of the game rules, they should be able to learn something.

One of the lecturers commented that C-Jump specifically foauseS programming
language. Players playing this game will only learn the Cuagg Another lecturer
claimed that the players of this game will only get to ledrout the syntax and not about
any programming concept. He also added that there is surely saunatawhlearning for

a new comer.

Another lecturer claimed that C-Jump is very primitive and vemyple to learn.
Interestingly this lecturer has given an insight into how thisegacontradicting with
real programs. Each time the player throws the dice, it vadinge the contents of

variable “x” which actually does not happen in the context of progragnim C-Jump,

o7

association of throwing the dice is an assignment statemergi¢m asriable “X”. In real
programs, once you have initialized a declared variable, change ofofaheg variable
will be depend on the course of the program. So, once the variableiabzeut to a
value, statements like x+1and x-- should change the value and not the dice.

4.2.5 Lecturers’ views on improving the C-Jump

The most common suggestion for improving the game was to improveatne g
instructions. The instructions need to be rephrased so that it iandsguous and the
players could easily understand what they are supposed to do. Theims$ratso need

to be reorganized so that the basic rules of the game arm fatstt@nd only then to state
what each statement means and how the player should proceed.

Lecturers’ comments also included suggestion to replace the maity drdhmetic
statements with other distinctive programming statements. Fances there should be
other statements like the nested if, for loop and do while. One tinedesuggested that
the game should include functions as well. They could be several oti@iohs, each
containing a different control structure (sequence, selection andiogpewhich should
be called by the main function. The new functions should return value tmaire

function.

Many of the lecturers suggested that the physical C-Jump board ghould be
transformed to a computerized board game. One lecturer explaineoythating the
game automated, we will able to keep track of the players’ megnehe game. It seems
that currently the players can easily disobey the game rmte# & difficult to monitor
every player's moves on a physical board game. There should some tmmpidgf the
player has moved his or her skier incorrectly. Another lectureredidnmmend that the
computerized board game should be intelligent to ensure that eveey gkty to place
the skier on a control statement on the board. This is to reduce thkilippss not

getting a chance to learn the “if”, “switch” and the “while”. Tieeture explained that if

the player is almost finishing the game but has not placed theoskeny of the control

structures, then the player should be forced to enter into the fitdke"vstatement on

the board.

The last interviewed lecturer totally disagreed with the ideausing this game for

undergraduate students and therefore refused to suggest any improvements.

ISSUES, RECOMMENDATIONS AND SUMMARY

5.1 Issues Emerging from the Study

The finding provides that most of the students do not play the gamethorigey do
not play according to the rules specified in the game instructioasy b the students do
not read the rules carefully and are very impatient to stargahee directly. They seem
to apply the rules of the classic Snakes and Ladders board game in C-Jump.

Majority of the students do not understand how to play the game. Thesrioys ways
to play the game and restart all over several times. Quén,dftey keep on replacing the
“x” of the subsequent statement with the addition of the earlsgersents. In other

words, they seem to roll the dice only once.

Most of the students do not understand how they should proceed the game when the
skier is located on the “return x” statement. The game instruction provides thdrigtiow

“ “return” statement returns skiers to the ski base. Regardlessa afumber
rolled, the skier moves past the FINISH line. ”

C-Jump

The first sentence of the above instruction is interpreted as #tktogestart all over.
The second sentence of the instruction explains that the playdrefnise game. The
students are confused whether they should start all over or thdy firesgame. The

students seem to wonder where is the “ski base” actually.

From the observation, it is apparent that the game finishes verPébaps, it is because
every group played C-Jump by using only 1 skier per player. Not evargla group

chose to use or attempted to use both skiers to represent the players.

Many students seem to evaluate the “if’ statements, “swittdterment and “while”
statements halfway in their moves. The rule of not evaluating stasements in the
middle of the move is not stated in the instructions given in the game box but isiedplai
in the animated tutorial which can be downloaded from the website.

C-Jump requires the players to replace the every ‘x’ with thebeushown on the rolled
die. There is no assignment statement on the game board but thrs pl@yeequired to
assign a new value to the “x”. This is different from real paotws, where once the
variable is given a value, the value remains unchanged unless thareassignment
statement causing that action or there is some unary operatoor (+} which will
increase or decrease the original value by 1. Hence, the studgnbemanfused when
they see the real programs in the future.

Students will not learn every distinctive statement availablehengame board. They
may not get the chance to place their skiers on every singemstat. Some of the
statements could be crossed by the player counting number step®rotlesidice. As a
result, they student will not get to learn the “switch” statetniiehe or she coincidently

did not get place the skier on the “switch”.

C-Jump comprises of too many arithmetic statements. Nearly 65&eo$tatements
presented on the game board are basic arithmetic statementsrnig\agerators like plus
(+), minus (-), multiply (*), divide (/), increment (++) and decrené-). Therefore,

most of the time, the player will be engaged in performing aatltnoperations instead
learning other types of statements. Other than arithmetic apesathe game consists of
several “if” statements, a few “while” statements, a tshi statement and few other

statements.

Statements which are not arithmetic or a control structurewitch and while), merely
requires the players to move downhill accordingly to the number rolletherice.
When the player places his or her skier on the following statenmsgsTable 10), the
player has nothing much to think or to learn but simply move on by countimythieer

61

steps rolled on the die. In other words, the students don’t learn anytbimgtliese

statements because they are not required to do anything special.

Table 10: List of statements

Programming Statement |Example of Statement
variable declaration int X

function declaration int main()

open curly brace {

close curly brace }

label jump:

case case 1:

else

break

default

Most of the students do not attempt to understand what the statemémtsgame board
means but are only interested to know how they should proceed from tleatcurr
statement. The instructions seem to explain 2 things: first, damimg or purpose of the
statement and then how the player should move from there. It seemsajbety of the
students pay less attention to understand the statements in conteey pst want to
know how to play the game. So, students just want to win the game alehmofrom
the game. This indicates that the students will not learn mualhiifmotive is just to win
the game. Winning the game does not necessarily mean that thetsthdee gained

more knowledge than the other players in the game.

62

5.2 Main Recommendations

Results of the studindicates that certain aspects of the C-Jump board game should be
enhanced further. Below are some recommendations for consideratiararhibé used
for the future development of the game particularly as an eféettiol for teaching

computer programming to tertiary level students.

5.2.1 Improvements to the game instructions

Most respondents mainly suggested the game instructions to bedrekisst, the
instructions should be made to be unambiguous. By reading the whole instrigcti
once, the players should easily understand each rule of the gameshbgldn’t be any
words which would make the players misconstrue its meaning. Theditistrs should be
restructured in a manner that will help players to easily uratetsthe game. First,
general rules of the game should be informed. For instance, igeneral rule that
players need to roll their dice again if their skier has stoppéteeorange square. This
sort of basic rule must be explained much earlier so that plggets have an overview
of how the game should be played. Only then should there be rules concars@sgof

placing the skier on different programming statements.

Each rule of the game should be clearly defined in the instructidn ke finding
clearly provides that almost every group of students evaluated thgectid’, “switch”
and “while” statement in the middle of their moves. It seemsthimtule was missed out

from the instruction text.

Some of the respondents suggested the important rules of the gamelaxred on the
game board itself. The finding reveals that that many new playdtse game read the
game instructions quite frequently. There are about 24 different dfpsstements on
the game and each of the statement may require a different Muwesuggestion is to

use a small portion of the large game board to provide information about the

programming statements and how to precede the skier from thémmesits. Perhaps,

this will reduce the time involved in reading the rules from a separate paper.

5.2.2 Modifications to the programming content

The second most prominent recommendation is to reduce the number airlibsietic
statements on the game board. Many respondents feel that thess sqisp@ce on the
game should be replaced with other distinctive programming statefitlenthe nested if

and for loop, do while loop. Players should be able to learn a lot from this game.

Some of respondents did highlight the idea of including functions in the.d2enhaps,
the game board could be divided into a few functions. Each function should do an
important task like finding the average value. There should be séwectibns calls and
return values in the game. This will definitely help players @afg the undergraduate
students to visualize how functions work in real programs. They Vgl be able to

understand the concepts of returning values from other functions.

5.2.3 Transformation to a computerized board game

Some of the respondents strongly suggested the transformation frgghythieal board
game into a computerized board game. By having the board game conguljtearious

intelligent features could possibly be added.

There could be 2 modes of play: having the skiers to be placed at slynaded
statements automatically and having the players to position the skiestatements by
themselves. The first mode is to allow players to observe howathe ghould be played.
The player will be required to click at their respective buttdtesrately. This will cause
their respective skiers to be repositioned at a designated statdapending on the rules

of the earlier statement.

Once the players have mastered the rules and the movements, ¢éne gdanythen choose
to play the second mode, in which they will be placing their skierhensguare
containing the statement by them. Every movement of the skier baillclosely
monitored. For instance, a beep sound will be triggered for anydasgoning of the
skiers. In other words, the players will be guided to play the gaymectly. This is
essential because it will help to ensure that the players teanove the skier as expected
or explained in the instruction. Perhaps, this will help them to visudlow certain

programming statements work in real programs.

It is an issue that many of the important statements in the gaold be coincidently
crossed over by the players. Hence, they might not learn anything thlesat missed
statements. By having the board game automated, the players cdyposdoprced to
enter into “if”, “switch” or any possible statement. This is huseathe game board can be
programmed to keep track of the number of statements experienckd players. For
example, the board game can be regulated to keep track of the nurfibestatements
experienced by a particular player in a single game sessimmdHéhat tracked, if the
player is almost ending the game but he or she did not place threoskian “if”
statement, then perhaps the board game can be programmed to foplayéreto

experience the last “if” statement of the game.

5.3 Summary

The C-Jump board game was studied in great detail to determthe gbssibility of
using it as useful tool to aid undergraduate students to learn progr@gn@Jump is
generally a good game to introduce basic programming statenoeiits glayers. It is
actually target for players of age 11 and above but it was stitggeto determine if it

could benefit undergraduate students as well.

Several techniques were employed to evaluate the game. Mainlyyaa@athered from
2 categories of respondents, i.e. the undergraduate students and tleeslelrtputs and

comments from both categories were analyzed accordingly.

Generally, the C-Jump was well appreciated by the students. Thoughrtteecovered
only basic statements, the finding indicates that there is swa@milye amount of
programming knowledge to gain from this game. However, severalsisa@se
encountered while the game sessions were being closely observed.i3$es were
elaborated in length and certain recommendations to possibly overcoreetadhose
issues were highlighted. It is great idea of attracting studelearn basic programming
by using a game. Perhaps, the adjusted version of this game wouly pee@fit many

novices at tertiary level.

REFERENCES

A History of Board Games. (2003). Astral Castle.
< http://www.ccgs.com/games/ (15/11/2006) >

Austin, R. G. (1940). “Greek Board Games”, Elliott Avedon Museum and Archive of
Games University of Waterloo, Canada.
< http://www.gamesmuseum.uwaterloo.ca/Archives/Austin/index.html (29/11/2006) >

Barr, A.& Kessler, S. (1996). “Good Programmers Are Hard To Find: An Alternative
Perspective on The Immigration Of Engineers”, Press Briefing, Stanford Sityver
Computer Industry Project.

< http://www.stanford.edu/group/scip/avsgt/immigration1096.pdf (24/11/2006) >

Block G. (2006). “Mitsubishi R&D's WarCratft Ill Panel”, ign.com.
< http://gear.ign.com/articles/698/698241p1.html (26/2/2007) >

BoardGameGeek , “Why Board Games are Better than Video Games”
< http://www.boardgamegeek.com/geeklist/13879 (5/5/06)>

BoardGameGeek (2005), Game: c-jump Computer Programming Board Game, Forum.
< http://www.boardgamegeek.com/thread/79632 (10/1/2007) >

Board Fun, (1998). “Types of Board Games”, Drawing Board.
< http://library.thinkquest.org/4377/drawingboard.html (14/1/2007) >

Board Games of the Future (2006). “Computer Engineers Bring a Bit of VirtualyRealit
to a Holiday Tradition”, Science Dalily.
< http://www.sciencedaily.com/videos/2006-11-11/ (26/2/2007) >

CanBooks. (2003). “Ancient Board Games and the Nabataeans.”
< http://nabataea.net/games3.html (29/11/2006) >

Cohn, D. (2005). “C'mon Kids, Let's Play Programmer”, Wired News.
< http://www.wired.com/news/technology/0,68872-0.html (24/11/2006) >

Deanh. (2005). “C-Jump: Computer programming board game”, Make: technology on
your time
< http://www.makezine.com/blog/archive/2005/09/cjump_computer.html (26/2/2007)>

de Boer, C. J. & Lamers, M.,H. (2004). “Electronic Augmentation of Traditional Board
Games”, Leiden Institute for Advanced Computer Science, Leiden University,
Netherlands.

< http://www.clim.nl/personal/docs/SP1-DeBoer-Clim.pdf. (10/1/2007) >

67

Dragontamer. (2005). “Talk:AP Computer Science”
< http://en.wikibooks.org/wiki/Talk:AP_Computer_Science (24/11/2006) >

Entertaible. (2006). “LCD-Based Board Gaming from Philips”, Gizmodo.

< http://gizmodo.com/gadgets/ces/entertaible-lcdbased-board-gammephilips-146788.php
(26/2/2007) >

History of Sports and Games. History World.

< http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historgicB2 (29/10/2006) >

Johnson, M. A. H., (2001) “Computer and Video Games Are "Not So Bad"

But Books, Board Games, Activity Equipment Are Better”, News, Virginia Cooperati
Extension.

< http://www.ext.vt.edu/news/releases/121701/games.html (5/10/2006)>

JWZ. (2005). “C-Jump: Computer Programming Board Game”
<http://jwz.livejournal.com/572429.html (20/3/06)>

Kholodov, I. (2005). C-Jump.
< http://www.c-jump.com (16/9/2006) >

Learn to Love Board Games Again. (2005). “Learn to Love Board Games Again:
100+ Ways to Rejuvenate the Games You Already Own”, Yehuda.
< http://jergames.blogspot.com/2006/10/learn-to-love-board-games-again10@ H2/2Q07) >

Morrison, P. (2005). “Peter Morrison's Board Gaming Philosophy Overview”, Morrison
Games.

< http://www.morrisongames.com/peter_morrison's_board_gaming_philosophy_ovbtriew
(10/1/2007) >

Saari, M., (2004), “Simulation & Computer Integration in Board Games”, The Games

Journal.
< http://www.thegamesjournal.com/articles/Computerintegration.shtd0/&5306) >

Smith, S. E. (2005). “Clickers, C-Jump”, Educause Connect.
< http://connect.educause.edu/taxonomy/term/825,826 (10/1/2007) >

The future of board games (2006). TomSoft.
< http://blog.landspurg.net/the-future-of-board-gaming (26/2/2007) >

The History of Board Games. (2002). Essortment.
< http://w.v.essortment.com/historyofboard_rjyw.htm (15/11/2006) >

Wikipedia contributors. (2006). “Board Game”, Wikipedia, The Free Encyclopedia.
< http://en.wikipedia.org/w/index.php?title=Board_game&oldid=90538486 (27/11/2006) >

APPENDIX: RULES TO PLAY THE C-JUMP BOARD GAME

HOW TO PLAY

Introduction
Discover the fundamentals of computer programming by plying a game!

c-jump is a fun family game, benefiting learners of programming languages, such as C,
C++ and Java.

By moving around the board, entering loops, branching under conditional statements, the
players gain physical experience of a complete game. Understanding of the internal action
of computer is essential to understanding what software is. Static programs causes
dynamic process in the computer. By playing the game, players see this process as a
physical and special motion.

Players
2 to 4 players.

Age
Age 11+.

Equipment
One game board, one die, and sets of colored pawns representing skiers and
snowboarders for each player.

Object Of The Game
First player to move all skiers past the FINISH line is the winner.

Setup
Skiers and snowboarders line up at the START location and race along the ski trails,
according to each player’s roll of die and board rules.

Spaces on the board are shown as squares. Each square has a statement of a rule,
borrowed from programming language. Semicolons “;” separate rules from each other.

Keyword “int” creates integer variable “x”. in the game, “x”
represents the number rolled on the die. For example, if player rolls
5, then x becomes equal to 5. From this location, skiers move
downhill accordingly to the number rolled on the die.

e

int main() “Main” is a name of the blue ski trail on the board. All computer
programs have function named “main”. Functions define computer
operations. The skier can move downhill number of steps rolled on
the die.

\

Opening brace “{" indicates beginning of a ski trail. Closing brace “}*
ends the trail. The braces require no special calculation, and can be
counted as free landing space.

BE

Playing the Game

Player rolls the die and moves one of his/her skiers, counting off the number of squares.
The game can be played with one or more skiers of the same color on the board, players
may choose any of their skiers to move.

Before the move, if skier starts at a space with an arithmetic statement, players should
calculate the number of steps by replacing “x” with the number rolled on the die. For
example,

2. Means “add 2 to x”. The player must replace “x” with the number
X+2; rolled on the die and add 2. if the player rolls 5, then number of
steps becomes 7: 2 +5=7.

Same rule applies to other statements with arithmetic expressions:
“6-x;” means “Subtract x from 6”.

“2*x;” means “2 times x".
“X+x;” means “x plus x".

x/X means “x divided by x”. a number divided by itself equal one.
Therefore, the player always gets to move one space from this
location.

X+ + means “increment x by one”. The player should add one to the
number rolled on the die. For example, if the number rolled is 4, the
resulting number of stepsis 5: 4 + 1 =5.

X—ms means “decrement x by one”. The player should subtract one from

! the number rolled on the die. If the number rolled is one, it becomes
D 0:1-1=0. If the player rolls 1, the skier cannot move on that turn.

70

if (x==1)

[while (x < 4)]

[while (x > 0)]

[goto jump;]

means “if x is equal to one”. A double equal sign “==" compares two
numbers for equality.

The condition “(x == 1)” is true when the number rolled on the die
equals one. In all other cases this condition is false.

When this condition is true, the skier enter orange ski trail on the
right side of the “if". After entering the “if” pathway, the player is
awarded a free roll and can only move the same skier, when playing
with more than one piece per player.

When this condition is false, the skier must continue downbhill,
following the blue trail.

Similar rules apply to all other “if” statements on the board:

“if(x > 1)" means “if x is greater than one,” which is true for 2, 3, 4, 5,
6 and false for 1.

“if(x < 5)” means “if x is less than five,” which is true for 2, 3, 4 and
false for 5 and 6.

The “else” keyword indicates a pathway that should be followed
when condition of the previous “if” statement was false. From this
location, a skier moves accordingly to the number rolled on the die.

means “while x is less than 4”. Keyword “while” test the condition the
same way “if” does. An orange arrow at the end of the “while”
pathway points back to the “while” space, allowing skier to make a
loop.

When condition “x < 4" is true, the skier enters the “while” pathway,
counting off the number of steps accordingly to the number rolled on
the die. The player is awarded one free roll and should move the
same skier again.

When the condition is false, the skier must continue downhill along
the blue trail moves.

The same rule applies to other “while” statements on the board. For
example, “while (x > 0)” means “while x is greater than zero”. Since
any number on the die is greater than zero, this pathway must
always be entered by skiers starting at this location.

When exiting from any loop, skiers should continue downbhill,
following the blue ski trail.

Keyword “goto” points skiers to the square labeled “jump:”. “Jump” is
a label that gives a name to a particular location on the board.
Labels allow “goto” statements to point to various places in a
computer program. From both of these locations, a skier moves
accordingly to the number rolled on the die.

71

switch(x) {

S
case 1:

|
O

case 2:

)

return x; }]

Finishing the Game

Starting at the “switch” statement location, skiers move to one of its
labels. If number rolled on the die is 1, 2, or 3, the skier should move
to the square labeled “case 1.7, “case 2.” and “case 3:” respectively.
The player is award one free roll and moves the same skier again. If
the player rolls 4, 5, or 6, the skier follows the “default:” pathway.

Keyword “break” creates an exit from a loop or a “switch”. From this
location, a skier moves the number of spaces rolled on the die.

Keyword “continue” forces the skier back to “while”. The skier moves
accordingly to the number rolled on the dice. If there is more than
one step in the move, the skier exits the loop and follows the blue
trail.

“return” statement returns skiers to the ski base. Regardless of a
number rolled, the skier moves past the FINISH line.

To complete their goal, skiers must cross the FINISH line by exact number of steps,
counting FINISH location as a square. If the number of steps is too big, the player must
choose another skier, or skips the turn.

	EXECUTIVE SUMMARY
	
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1	Introduction
	1.2	Background
	1.3	Special Terms and Words
	1.4	Aims of the Study
	
	1.5	Outline of Subsequent Chapters
	
	LITERATURE REVIEW
	2.1	What is a Board Game?
	2.2	History of Board Games
	2.3	Nature of Board Games
	
	Luck
	Luck and Skill
	Skill
	Usually involves spinners, dice, and cards, and doesn't involve strategy.
	
	These games might include dice, spinners, and cards, but also include strategy and choices.
	These games don't use dice, spinners, or cards, and have nothing to do with luck. Skill games take lots of practice and include strategy.
	Easiest to develop
	Harder to develop
	Most difficult to develop
	Parcheesi, Candy Land, Life
	Monopoly, Sorry, Backgammon
	Chess, Checkers, Go, Othello
	These games usually are the simplest to play, because they don't require much thinking. Most of the time they turn out as a race.
	
	
	Anything more complex than spinning a spinner, rolling the dice, or picking a card, would fall under the catagory of luck and skill. A luck and skill game must require some luck or it will fall under the category of a skill game.
	These games consist of no luck at all. Skill games usually have many different rules, and give you€many choices on where to move, which piece to move, and how to win. Skill games usually include many pieces, involve strategy, and require concentration to play

	
	2.4	Why Board Games are better than Electronic Games
	
	2.5	Modern Board Games
	2.5	About the C-Jump Board Game
	2.5.1	Introduction
	2.5.2	Board Game Design
	2.5.3	The Look and Feel
	
	The back cover of the game box (see Figure 8) provides a general idea about the board game. Specifically, it dictates the basic rules of the game and the educational benefits of playing the game. The motto of the game ﬁRace down a mountain, think like a computer programmer!ﬂ is clearly presented at the top left corner of the game box and a snapshot of the whole game board is displayed at the right portion of the back cover.
	2.5.4	The Game Board
	
	2.5.5	The Rules
	2.5.6	Depth of C-Jump
	
	
	
	
	2.5.7	People™s Views about the C-Jump

	ﬁWhere's the danger? A game without danger is no fun at all. A race is all well and good, but what players really want is to avoid going to jail or to score the community chest or pawn the most valuable properties. Introduce some security concepts. Get kids used to the idea of a buffer overrun (skiing off a cliff?), poor input validation (forged ski ticket?), and other things –ﬂ
	
	METHODOLOGY AND FINDINGS
	3.2	Participant Observation
	3.3	Tape Recording
	3.4	Field Notes
	
	3.5	Questionnaires
	
	
	
	
	
	
	No

	ANALYSIS
	4.1	Students and the C-Jump board game
	4.1.1	Students™ views on the ability to play the game
	The following chart (Figure 16) provides that mean response for each of the category of evaluation by students. Overall, the responses were quite positive. The fun factor category were rated the highest, with a mean score of 3.8 ± 0.93. The lowest-scoring category was clarity of rules, with a mean square of 2.75 ± 1.22. These results generally indicate the best aspect of the game is that it is fun and interesting to play with and the worst aspect of the game are the game rules which are rather confusing or incomplete.
	
	
	4.2	Lecturers and the C-Jump board game
	ISSUES, RECOMMENDATIONS AND SUMMARY
	5.1	Issues Emerging from the Study
	Object Of The Game
	Playing the Game
	Keyword ﬁcontinueﬂ forces the skier back to ﬁwhileﬂ. The skier moves accordingly to the number rolled on the dice. If there is more than one step in the move, the skier exits the loop and follows the blue trail.
	ﬁreturnﬂ statement returns skiers to the ski base. Regardless of a number rolled, the skier moves past the FINISH line.
	
	Finishing the Game
	To complete their goal, skiers must cross the FINISH line by exact number of steps, counting FINISH location as a square. If the number of steps is too big, the player must choose another skier, or skips the turn.

