
11

EXECUTIVE SUMMARY 

 

Learning computer programming is never a simple task for novices. Many undergraduate 

students experience several challenges in learning programming especially their first 

programming language. There are chances of learning and progressing in programming 

but there are also high chances of not learning and failing it. Several techniques are 

employed by many lecturers today in efforts to ensure that atleast the basic knowledge of 

programming gets across to the students. C-Jump Computer Programming Board is a new 

game in the game industry that teaches basic computer programming statements to its 

players. It educates the basic commands of a programming language, such as the concept 

of variables, “if”, “else”, “switch”, “while” and “continue”. Players will be able to see 

how the real computer program looks like. Though it is targeted for young players of age 

11 and above, it’s potential to be used as a tool to aid undergraduate students to learn 

basic computer programming was investigated. Both qualitative and quantitative 

techniques were employed to collect the necessary data for the study. Twenty fresh 

undergraduate students were divided into 5 groups to play the game. The game sessions 

were closely observed to note their reactions and gestures, their comments were tape 

recorded, field notes were taken and upon completion of the game, all participants were 

encouraged to answer a set of questionnaire. Besides obtaining input from the students, 5 

computer programming lecturers were interviewed. The Likert Scale technique was 

employed in analyzing input of the students. From the finding, it was clear that there was 

positive response from the students. Most of the interviewed lecturers too liked the idea 

of using games to teach programming but have suggested several improvements for C-

Jump to be used for tertiary level students. Several other issues were encountered while 

the C-Jump sessions were closely observed. Therefore, a few main recommendations 

were suggested to overcome some of the issues in concern. Nevertheless, the finding 

strongly indicates that there is some amount of basic programming knowledge to gain 

from the game.      



22

TABLE OF CONTENTS  
                                                                                                                          PAGE 

 
EXECUTIVE SUMMARY        1 
 
TABLE OF CONTENTS        2 
 
LIST OF TABLES         4 
 
LIST OF FIGURES         5  
 
INTRODUCTION        

1.1 Introduction        6 
1.2 Background         8 
1.3 Special Terms and Words       9 
1.4 Aims of the Study        9 
1.5 Outline of Subsequent Chapters      10 

 
LITERATURE REVIEW        

2.1 What is a Board Game?       11 
2.2 History of Board Games       11 
2.3 Nature of Board Games       13 
2.4 Why Board Games are better than Electronic Games   15 
2.5 Modern Board Games       17 
2.6 About the C-Jump Board Game      21 

2.6.1 Introduction        21 
2.6.2 Board Game Design       22 
2.6.3 The Look and Feel       23 
2.6.4 The Game Board       25 
2.6.5 The Rules        26 
2.6.6 Depth of C-Jump       28 
2.6.7 People’s Views about the C-Jump     30 

 
METHODOLOGY AND FINDINGS      

3.1 Introduction         32 
3.2 Participant Observation       32 
3.3 Tape Recording        34 
3.4 Field Notes         35 
3.5 Questionnaires        36 
3.6 Expert Interviews        40 

 
ANALYSIS          

4.1 Students and the C-Jump board game     47 
4.2 Lecturers and the C-Jump board game     54 

 
ISSUES, RECOMMENDATIONS AND SUMMARY    



33

5.1 Issues Emerging from the Study      60 
5.2 Main Recommendations       63 
5.3 Summary         66 

 
REFERENCES          67 
 
APPENDIX: RULES TO PLAY THE C-JUMP BOARD GAME    69 
 
 
 



44

LIST OF TABLES 

 

TABLE                  PAGE 

1. Types of board games       20 
2. Type of movements in C-Jump       32  
3. Programming statements in C-Jump      33 
4. Observation results         38 
5. Players comments        39 
6. Field notes results         40 
7. Response for the five evaluation measures (Question 1 to 5)   43 
8. Comments from respondents (Question 6)      44 
9. Expert interviews’ results        47 
10. List of statements         67 
 

 



55

LIST OF FIGURES 

 
FIGURE                  PAGE 

1. Senet          16 
2. Royal Game of Ur        17 
3. Go          17 
4. Types of board games        19 
5. DiamondTouch by Mitsubishi      24 
6. Entertaible by Philips       25 
7. Front cover of the game box      29 
8. Back cover of the game box      29 
9. The game board         30 
10. Programming statements in C-Jump     34 
11. Playability         52 
12. Clarity of rules         54 
13. Educational value         55 
14. Fun factor          56 
15. Aesthetic appearance        57 
16. Overall response of the five evaluation measures    58     
  



66

INTRODUCTION 

 

1.1 Introduction 

 

“The demand for programmers is likely to increase steadily in years to come. 

Furthermore, the programs that needs to be written will continue to increase in 

complexity, requiring higher levels of software skills” (Barr and Tessler, 1996). Research 

has shown that the demand for software specialists in the modern age continues to 

increase day to day. This is due to the fact that many organizations are seeking new 

applications for computers and improvements to the software are already in use.  

 

Educators are facing tremendous challenges in generating quality programmers to meet 

the high expectations of the computer industry. IT undergraduates endure immense 

pressure to become skillful programmers for the software industry. Many programming 

languages are being created for different purposes. The ability to program in different 

languages is often a prerequisite for employment in many reputable companies. 

 

The process of learning new programming languages becomes much easier if there is a 

good foundation on the fundamentals of computer programming.  

 

“Once you learn one programming langauge the others are fairly easy to pick up as well” 

(Dragontamer, 2005). Therefore, it is necessary to ensure that the undergraduate students 

strictly meet the objectives set for their programming languages courses especially the 

first programming course taught at the high school. The introductory programming 

courses at universities are often comprehensive due to the fact that there are many 

programming concepts, statements and syntaxes to be covered. Upon completing the 

introductory course, students are usually expected to demonstrate their understanding of 

the programming concepts and statements by writing complete programs. Many students 

usually do not meet the expected outcome. Novice students often complain that 

programming is difficult to learn, irrelevant to their lives and boring. 

 



77

This project is focused to investigate how games can be used as a mechanism to support 

teaching and learning of programming at universities. There are lots of research attention 

to the use of games especially on both video and computer games in educational settings 

but there is least exploration on the use of physical board games in learning.  

 

Board games are usually played for a variety reason such as social gathering, past time 

and for educational purposes. There aren’t much board games in the market that are 

solely created and aimed to teach basic computer programming. Although, computer 

programming board games like Programmer's Nightmare and RoboRally do exist, but 

these games require sufficient programming knowledge to play (Cohn, 2005). C-Jump is 

a recently released computer programming board game, which is aimed to provide basic 

computer programming exposure to its players. This game could be used as a tool to 

teach basic programming to tertiary level students. Therefore, the objective of this project 

is to investigate the possibility and appropriateness of using the C-Jump board game as a 

tool to introduce computer programming to tertiary level students.  

 

The study will be conducted by collecting the necessary data using suitable research 

methods and then interpreting the results to reach the consensus of whether the game 

should be used as a tool to aid students to learn basic programming. Firstly, the 

participant observation technique will be employed by getting groups of students to play 

the board game, while their verbal communication being tape recorded. Despite that, the 

field notes technique will be employed by getting the observer to note significant 

comments made by the participants. At the completion of the game, students will be 

given a questionnaire to evaluate the C-Jump board game as an educational tool. Apart 

from obtaining responses from the students, a few lecturers that have taught 

programming courses will be interviewed to obtain their opinions of using the board 

game to introduce basic programming to students. These research techniques are suitable 

to gather both students and lecturers views about employing the C-Jump to provide initial 

programming exposure to novice students.   

 

 



88

1.2 Background  

 

Teaching and learning computer programming especially the first programming language 

is a challenging task for both the lecturers and students respectively. Research has proven 

that educators contemplate various methods to make learning the first programming 

language a less painful experience. Novice computer programming learners are often 

bombarded with lots of new programming terminologies, concepts and the rigid syntaxes 

that scare them away.  

 

One possible way to reduce the difficulty of learning the first computer programming 

language is to introduce the fundamentals of programming in a smart and fun way before 

the targeted group of students undertakes the first programming language course. C-Jump 

is a new innovative board game constructed to build the basic understanding of computer 

programming. It educates the basic commands of a programming language, such as the 

concept of variables, “if”, “else”, “switch”, “while” and “continue”. Learners will be able 

to see how the real computer program looks like. Although the C-Jump is targeted for 

learners of age 11 and above, it has potential to be used as a tool to introduce computer 

programming to tertiary level students. However, knowing that C-Jump is a new 

invention, issues involved in playing the game for educational purposes are to be 

investigated.   

 

It is assumed that the board game would be great help to the novice students when they 

attend the formal lectures and labs of their first programming language course. There 

would be fewer jargons as the board game covers variety of programming commands and 

basic syntaxes. Students may not be able to write complete programs, but they would 

have a good understanding about the common statements used in writing programs.     



99

1.3 Special Terms and Words 

 

C-Jump  – Refers to the computer programming board game being 

studied to determine if it could be used as an aid to teach 

basic programming to tertiary level students.  

Skiers (or pawns)  – Refers to the games pieces of the C-Jump board game. A 

game piece represents a player on the game board. In C-

Jump, players can control one or two game pieces of the 

same color.  

Game Board (or board)  – Refers to the surface where the players play the game. 

Players would place the game pieces on specific position 

of this board, depending on the rules of the game.  

Space (or square)  – Refers to a physical unit of progress on a gameboard 

delimited by a distinct border. In C-Jump, each of the 

squares contains a programming programming.   

 

1.4 Aims of the Study 

 

The main aims of the study were to assess the practicality and suitability of using the C-

Jump board game as a tool to introduce computer programming to tertiary level students 

and to make appropriate recommendations concerning any flaws indicated by the 

findings. The specific objectives were: 

- To examine whether the rules of the board game are clear to the players. 

- To examine the appropriateness of the content presented in the board game. 

- To examine whether the players enjoy the game.  

- To examine whether the players gain any computer programming knowledge 

while they play the game. 

- To examine the presentation of the board game.  

- To examine whether changes are necessary to the game’s design and to make 

suggestions to overcome any problems encountered in the game.   



1010

 

1.5 Outline of Subsequent Chapters 

 

Literature Review 

The contents of this chapter can be divided into 2 broad categories: board games in 

general and the C-Jump computer programming board game. First half of this chapter 

provides basic information about board games, i.e. what is a board game, history of board 

games, nature of board games and modern board games. The other half reveals specific 

details about the board game being studied, i.e. history of C-Jump, board game design, 

look and feel, game rules, scope and people’s views about this game.  

 

Methodology and Findings 

As the title explains, this chapter reveals information about the methodology and the 

findings. First, it provides details about the techniques used in gathering the necessary 

data for the study, i.e. methods of data collection, objective and the reason why these 

methods were chosen. Then, the collected data is systematically presented in tables.   

 

Analysis 

This chapter of the report provides details about the interpretation of the raw data which 

was collected and presented in the previous chapter (Chapter 3: Methodology and 

Findings). First, this chapter discusses students’ view about the C-Jump board game and 

then it provides lecturers’ opinion about using C-Jump for tertiary level students. 

  

Issues, Recommendations and Summary 

This chapter is divided into 3 different sections: issues emerging from the study, main 

recommendations and summary. The first section reports several issues about the game 

which was discovered throughout the study, the second section provides a few 

recommendations to enhance the C-Jump board game and finally, there is a short 

summary about the whole project.  



1111

LITERATURE REVIEW  

 

2.1 What is a Board Game?         

 

Board game, refers to any game played with a premarked surface, with counters or pieces 

that are moved across the board. A History of Board Games defines board games are 

defined as “any game played primarily on, but sometimes just near, a board of some 

kind” (2003).  

 

2.2 History of Board Games 

 

Board games have been consistently popular, and the origins of board games date back to 

ancient times. Over time board games spread to ancient Egypt, Greece and Rome, 

through Europe and eventually to the colonies of the New World.  

 

The History of Sports and Games provides that the Senet (see Figure 1) of the Egyptians 

was one of the earliest board games known and it was being played before 3000 BC. 

Senet was played by both the common and noble group of people and eventually it was 

believed to have taken on ‘religious significance’ (CanBooks, 2003). 

 

 

 

Figure 1: Senet (CanBooks, 2003) 

 



1212

The Royal Game of Ur (see Figure 2) is the most famous board game known, dating from 

about 2500 BC (CanBooks, 2003). This ancient board game was discovered by a famous 

archaeologist, Sir Leonard Woolley, in the tomb of the royal cemetery of Ur (CanBooks, 

2003). Wikipedia reveals that most of the games excavated by Leonard Woolley can be 

found at the British Museum in London (2006). 

 

 

 

Figure 2: Royal Game of Ur (CanBooks, 2003) 

  

The Go board game or “Wei-qi” in Chinese (see Figure 3) is another classic game known, 

as far back as 2300 BC that has maintain the same rules for longer than any other board 

game out there (A History of Board Games, 2003). The Go game have also spread into 

Korea, Japan sometime around the year 700 A.D. (A History of Board Games, 2003).   

 

 

 

Figure 3: Go (A History of Board Games, 2003)   

 



1313

2.3 Nature of Board Games 

 

Board games usually consist of boards, pieces, a system of rules and players. They have 

been used as a pastime as well as a tool to teach children and enlighten adults over a 

thousands years. There are many different types and classifications of board games.  

 

The Histroy of Board Games provides that there are two categories of board games: 

strategy games and racing games (2002). The object of the strategy games that are to gain 

control of a larger board by using pieces to block or capture an opponent’s pieces (The 

Histroy of Board Games, 2002). Chess, Risk and Monopoly are examples of strategy 

board games. The racing games are aimed to begin at a specific point on the board game 

and race along one or more paths to reach a specific goal finish line before your opponent 

(The Histroy of Board Games, 2002). Chutes and Ladders, Life and Parcheesi are 

examples of racing board games. Other board games do not fit in these categories. 

However, most are variations. For example, the objective of the board game Clue is to be 

the first player to solve a specific puzzle. Although the players are not trying to get to a 

specific location on the board, this is still a type of racing game.  

 

Roland G. Austin in Greek Board Games claims that board games are generally based on 

the ‘three primitive activities of man’:  the battle, the race, and the hunt (1940). The 

object of the battle, the race and the hunt game is to chase the opponents from the game 

board, bring all game pieces to a specific end position on the board and to escape from 

the opposing team respectively (Austin, 1940). 

 

Wikipedia have different classifiication of board games: games that simulates aspects of 

real life and games that do not imitate reality (2006). Popular games that simulate aspects 

of real life include Monopoly, which is a rough simulation of the real estate market; 

Cluedo/Clue, which is based upon a murder mystery; and Risk, which is one of the best 

known of thousands of games attempting to simulate warfare and geo-politics. Other 

games that are not based on reality are abstract strategy games like chess and checkers, 

word games, such as Scrabble, and trivia games, such as Trivial Pursuit. 



1414

 

 

 

 

 

 

 

 

 

 

Figure 4: Types of board games 

 

Board games are normally designed to involve luck, skill or both luck and skill. Figure 4 

shows the 3 classifications of board games. The classic Snakes and Ladders is a pure luck 

based board game that doesn’t require the players to make any decisions during the play. 

These sorts of games are often targeted for children. There are various methods of 

introducing luck in board games. The most common is using the dice (usually six sided). 

In the Snakes and Ladders, the number on the dice is used to determine how many steps a 

player move his or her token. Games like Sorry! use deck of cards to create randomness 

and Scrabble involves luck by requiring players to pick randomly pick letters.        

 

The popular Chess board game is solely based upon skill. Most of the board games 

involve both luck and skill. Monopoly comprises both luck and skill as it uses the dice 

and it requires some thinking. Players may be losing in a game like this due to luck 

involvement, but a player with a superior strategy will win more often. Adult game 

players usually find purely luck based games quite boring and prefer games that require 

them to make some decisions. Table 1 gives a clear comparison of luck, skill and luck 

and skill based board games.  

 

Board Games  
 

 
 
 

 
 
             

LUCK STRATEGY 

LUCK 
+ 

STRATEGY 



1515

Table 1: Types of board games (Board Fun, 2005) 

 

Luck Luck and Skill Skill 

Usually involves spinners, 
dice, and cards, and doesn't 
involve strategy. 

 

 

These games might include 
dice, spinners, and cards, but 
also include strategy and 
choices. 

 

These games don't use dice, 
spinners, or cards, and have 
nothing to do with luck. Skill 
games take lots of practice 
and include strategy. 

Easiest to develop Harder to develop Most difficult to develop 

Parcheesi, Candy Land, Life 
Monopoly, Sorry, 
Backgammon 

Chess, Checkers, Go, 
Othello 

These games usually are the 
simplest to play, because 
they don't require much 
thinking. Most of the time 
they turn out as a race. 

 

 

 

Anything more complex than 
spinning a spinner, rolling the 
dice, or picking a card, would 
fall under the catagory of luck 
and skill. A luck and skill game 
must require some luck or it 
will fall under the category of a 
skill game. 

These games consist of no 
luck at all. Skill games 
usually have many different 
rules, and give you many 
choices on where to move, 
which piece to move, and 
how to win. Skill games 
usually include many pieces, 
involve strategy, and require 
concentration to play 

 

2.4 Why Board Games are better than Electronic Games 

 

Board games are generally more educational than video games. Johnson in one of the 

Virginia Cooperation Extension’s news release reports that Thomas Sherman, a professor 

of teaching and learning, suggests that parents should consider buying the traditional 

board games, books and activity equipments over electronic games for their children 

(2001). The authors further reports that there are several guidelines to ensure positive 

video gaming with young children and teens. Some of these guidelines include setting up 

the game equipment in a social setting, ensure the games are suitable for the desired age 

level, limit the game play time to two hours and have “regular quite time” for other 

activities.       

  

Many publications allege that computer games especially simulation games have high 

educational value over other types of games. Nonetheless, these games often are too 

complex. Saari (2004) states that “board games have one advantage over computer 



1616

games: players know the rules”. This implies that board games are simple as there are no 

hidden rules. Whereas, in computer games the players are expected to enter some input to 

obtain some output “based on rules they can’t be sure of” (Saari, 2004). In other words, 

nobody knows exactly know how the game engine is being designed unless one has 

access to the source code.   

 

BoardGameGeek is an online resource providing lots up-to-date information about games 

and it contains an active discussion forum. Why Board Games are Better than Video 

Games is one popular subject of discussion in the forum. Below are selected opinions 

about board games from various game enthusiasts. 

- Cheaper than video games 

- Increase in value with time than video games that decrease in value after some 

time 

- Wireless or it can be played in the complete absence of electrical power unlike 

video games  

- Easier to be designed than video games as it does not involve programming  

- Bring people together, 2 or more players play the game together  

- Non-violent  

- Do not cause payers to strain their eyes in front of their monitors 

- Compatible ever unlike other games that involve serious compatibility issues  

- They are real as players can touch the components, deal cards and feel the tokens   

- They are mostly quite   

- Accessible to everyone as they do not come with specific ratings like U and 

18SX   

- Do not cause Attention Deficit Hyperactivity Disorder (ADHD) 

- Players to easily change the rules to suit a group, fix a flaw in gameplay, or just 

make a game more fun easily. 

- Handy and easily transported  

- They are unique or completely different every time 

 



1717

2.5 Modern Board Games 

 

In this modern era of technology, computers have profoundly impacted the traditional 

board games, as most of these board games are now computerized. Like any other 

computer games, board games can be downloaded, installed and played on personal 

computers. Similar to other online games, these board games can also be played online 

against other players located remotely.  

 

Many researchers seem to support the idea of computerizing existing board games for 

several reasons. Morrison explained that computer relieves tedious task of calculating the 

results of a battle (2005).  

 

“By speeding up these tedious offline tasks, a computer allows players to focus more on 

their strategy and actual game playing, and less time on the accountant bean-counting at 

the end of a turn” (Morrison, 2005). 

 

In older board games, players might have read all the cards and the game never change 

(Learn to Love Board Games Again, 2005). 

 

Modern board games are designed differently. In modern board games, players compete 

until the end of the game unlike older board games, where players drop out of the game 

before it ends and wait for other players to finish (de Boer and Maaten, 2004). 

Nevertheless, most modern games are designed closely to original board game. Often, the 

physical look and rules of the game are well preserved but how the players interact in the 

game differs. For instance, instead of having the players to throw the dice, they are now 

required to click at the dice on the screen. The dice is programmed to randomly display a 

number ranging form 1 to 6.  

 

The use of Artificial Intelligence (AI) allows modern board games to be more intelligent. 

Some of the board games specifically King Arthur of designer Rainer Knizia has gone to 



1818

the extend of incorporating “intelligent electronics” that give feedback depending on 

decisions made by player (de Boer and Maaten, 2004).     

 

Clim J. de Boer and Maarten H. Lamer in their study of Electronic Augmentation of 

Traditional Board Games (2004) have proposed a conceptual framework for the 

development of modern board games called self-conscious game board. The proposed 

concept of a self-conscious game board is built around the idea of incorporating the 

ability to recognize the state of the game and to provide appropriate feedback (de Boer 

and Maaten, 2004). The framework was tested by electronically enhancing an existing 

board game, Settlers of Catan and the outcome showed positive results.  

 

“Through a case study in which Settlers of Catan was electronically enhanced, it was 

proved that the proposed concept of a self-conscious gameboard is viable and capable of 

heightening a board game’s appreciation, particularly through dynamic changing of the 

game board. The case study also showed player’s positive reception of the unexpected 

new possibilities to customize a game to their own liking. (de Boer and Maaten, 2004)”       

   

The next generation of board games will blend the coolness of video games and the social 

approach of video games. Currently, research efforts are focused on the development of 

multi-touch interaction which will allow multiple players to touch the game board instead 

of moving the physical game pieces or pawns by hands.  

 



1919

 

 

Figure 5: DiamondTouch by Mitsubishi (Block, 2006) 

 

Mitsubishi have released an invention called DiamondTouch (see Figure 5), which is not 

really a touch screen because the display is coming from a video projector, but several 

players can touch the screen simultaneously (The Future of Baord Games, 2006). The 

Mitsubishi Electric Research Laboratories as quoted by Block, 2006 claims that: 

 

"DiamondTouch is front-projected and uses an array of antennas embedded in the touch 

surface. Each antenna transmits a unique signal. Each user has a separate receiver, 

connected to the user capacitively, typically through the user's chair. When a user touches 

the surface, antennas near the touch point couple an extremely small amount of signal 

through the user's body and to the receiver. This unique touch technology supports 

multiple touches by a single user (e.g., two handed touch gestures) and distinguishes 

between simultaneous inputs from multiple users. DiamondTouch tables are available in 

two sizes (32" diagonal and 42" diagonal display), while custom sizes and shapes are 

available on spec." 

 



2020

 

 

Figure 6: Entertaible by Philips (Entertaible, 2006) 

 

Besides DiamondTouch, there is another promising creation which is still a working 

prototype by Philips called Entertaible (see Figure 6). Entertaible is a “30-inch LCD 

screen embedded in a table displays the board and uses infrared sensors to detect how the 

players move their pieces” (Board Games of the Future, 2006).  Players are required to 

roll the virtual dice and move the clear cubes (pawns) around the screen according to the 

arrows that shows where they can move (Entertaible, 2006). 

 



2121

2.5 About the C-Jump Board Game 

  

2.5.1 Introduction 

 

C-Jump is a new released educational board game in the board game industry that 

introduces the fundamentals of computer programming to its players. The theme of C-

Jump is Skiing and Snowboarding Race and it has a catchphrase that impart “Race down 

a mountain, think like a computer programmer!” The goal of the game is to find the most 

efficient way to “ski” down a mountain. Players are to image themselves as either skiers 

or snowboarders, racing with each other to reach the finish line. The catch is that the 

player must make decisions based on common computer programming syntax, such as 

“if(X==1)” you can go down a certain path. The first player to move all pieces past the 

finish line would be the winner.  

  

The C-Jump was created and released in 2005 by a Computer Programmer named Igor 

Kholodov. The initial idea of creating such game was triggered to Kholodov in 1999 

when he wanted to teach the basics of programming to his son. “I was fired up by my 

son's interest and went to Toys “R” Us and the Discovery store hoping to find some 

educational toys and was surprised there was nothing out there,” said Igol Kholodov 

(Cohn, 2005). 

 

The game is manufactured by the C-Jump Factory, a company based in Braintree, 

Massachusetts. The company specializes in the manufacturing of educational games for 

children, college students, and adults. Today, C-Jump is being commented and discussed 

in many articles in popular websites such as Wired News, MSDN, Popgadget and 

BusinessWeek.com.  

 

The game is designed for learners between the ages of 11 and above, who are interested 

to learn the basics of computer programming. The game can be played with a minimum 

of 2 players to a maximum of 4 players. It takes about 30 minutes to complete a single 



2222

game session with 2 players and an additional player would incur about 5-10 minutes of 

extra time (C-Jump, 2005). 

 

The game helps to develop the basic understanding of a complete computer program, 

formed by logical sequences of commands. Players will indirectly grasp the basic 

computer programming commands as they make their moves in the game. The game 

teaches the players basic commands of programming languages such as the basic concept 

of variables, if, switch and while. Regular players will become familiar with these 

commonly used commands used in programming languages like as C, C++ and Java.  

 

“By moving around the board, entering loops, branching under conditional and switch 

statements, the players gain physical experience of a complete program. Understanding 

of the internal action of a computer is essential to understanding what software is. Static 

program causes dynamic process in the computer. By playing the game, players see this 

process as physical and spacial motion. (C-Jump, 2005)” 

 

The C-Jump website claim the following facts about the game: “This game is not only 

about teaching and learning: it's fun and entertainment for the whole family; skiing and 

snowboarding is a perfect programming analogy; C-Jump game is ideal for home school 

education; the game is based on the code of a real computer program. (C-Jump, 2005)” 

 

2.5.2 Board Game Design 

 

The C-Jump is designed based on the classic racing Snakes and Ladders board game 

where a player's game piece follows a track from start to finish. The players race with 

each other to reach the finish line. It is built using the similar concept of having the 

players to roll the die and then move the game pieces to some specific location on the 

game board. C-Jump comes with a Start space at one corner of the game board and a 

Finish space at the other far corner of game board. Spaces on the board are shown as 

squares. Instead of having a number in the spaces of the game board, each space has a 

statement of a rule, borrowed from the C programming language such as the “if”, “else”, 

http://c-jump.com/pagerules02.html
http://c-jump.com/pagerules02.html
http://c-jump.com/pagerules02.html


2323

“switch”, “while” and “continue”. These statements are sequenced to form a complete 

computer program.  

 

The Snakes and Ladders contains snakes of different lengths, which could slow down 

players from finishing the game. The “goto” statement in C-Jump acts in similar way in 

the sense that it changes position of the game piece from better to worse.  

 

It is vital to understand how the players should make their moves in the C-Jump. Most of 

the spaces in C-Jump contain statements using the “x” variable. So, before the player 

proceeds, he or she is required to calculate the number of steps by replacing “x” with the 

number rolled on the die. Lets us assume that the player’s game piece is located on a 

space containing the “x + 2” statement and the number shown on the die is 4. Since the 

result of the addition is 6, the player would need to position the game piece counting 6 

locations from the previous space. If at all the piece ended on a space containing 

conditional statement like the “if”, “switch” and “while”, the player would need to roll 

dice again to decide the next path. So, different statements have different instructions for 

the movement of the game piece. Therefore, players are expected to read the board rules 

carefully in order to advance the game correctly. 

 

2.5.3 The Look and Feel 

 

The game set comes with 1 game board, 1 die, 8 playing pieces (of 4 different colors: red, 

green, blue and yellow) and a copy of game rules. Since it comes with 8 pieces, players 

are required to decide the number of pieces to be used in the game. They have a choice to 

use either 1 or 2 pieces of the same color to represent each skier or snowboarder.   



2424

 

Figure 7: Front cover of the game box (C-Jump, 2005) 

 

The game box comes with an attractive and promising look that at a glace sets a good 

impression towards the game (see Figure 7). The game box cover clearly illustrates that 

theme of the game, which is Ski and Snowboard Race. The top right portion game box is 

presented with larger picture of a snowboarder in a race. The top left portion of the game 

box is depicts a simple computer program that explains that the game is related to real 

computer programming and it has an educational purpose. It provides all the necessary 

information about the game: the title, targeted players, equipment and the website 

address. 

 

Figure 8: Back cover of the game box (C-Jump, 2005) 

 



2525

The back cover of the game box (see Figure 8) provides a general idea about the board 

game. Specifically, it dictates the basic rules of the game and the educational benefits of 

playing the game. The motto of the game “Race down a mountain, think like a computer 

programmer!” is clearly presented at the top left corner of the game box and a snapshot of 

the whole game board is displayed at the right portion of the back cover.  

  

2.5.4 The Game Board 

Figure 9: The game board (C-Jump, 2005) 

 

As you can see in Figure 9, the background of the game board depicts a large view of 

mountains filled with snow. The mountains are being used for the purpose of skiing and 

snowboarding. In the board, there are many people caring out the activity of skiing and 

snowboarding from the top till the bottom of the mountain. There are added sceneries 

such as the pine trees and mountain ranch that makes the desired atmosphere to suit the 

theme, a ski and snowboard race adventure.  

 

http://www.c-jump.com/gameview002large.JPG


2626

The game board is presented with 145 spaces containing various programming 

statements. These statements are linked with arrows that will guide players to reach the 

finish line. The statements actually form a large computer program. Players are supposed 

to navigate their game pieces to the finish line by placing the pieces on the designated 

spaces based on the number shown on the rolled die and the instruction of the previous 

statement.     

 

The spaces containing the programming statements come in 3 different colors: blue, 

orange and gray. The orange spaces contain conditional statements such as the “if”, 

“switch” and “while”. If the players end their movement of pieces at orange spaces, they 

are awarded a free roll to determine the next path, which could either be the true or the 

false path. There is no significant difference between placing the pieces in the blue or 

gray spaces. However, the blue spaces are sequenced to be the direct path to the finish 

line and the gray spaces are statements on the true path of the conditional statements. The 

arrows connecting the statements come in 2 colors: blue and orange. The blue arrows 

represent the direct or shortest path to the finish line whereas the orange arrows are other 

paths in the game. 

 

2.5.5 The Rules 

 

Skiers and snowboarders line up at the start location in the game board. Player rolls the 

die and moves one of his or her skiers to new position by counting off the number of 

spaces. Players can play the game with 1 or 2 skiers for each player. If each player is 

represented with 2 skiers, players may choose any of their skiers to move. The first player 

to move all his or her skiers past the finish line would be the winner.  

 

Ultimately, it is best to follow the blue trail, which is represented by blue arrows. The 

blue trail is the direct path to the finish line. However, the “if”, “switch” and “while” 

statements on the game board may cause the players to follow the orange trail that may 

cause delay in reaching the finish line. 

 



2727

The game board spaces contain different types of programming commands. So, there are 

different ways of counting the number of moves to be made to determine the new 

position of the skier. Some statements require the player to replace the ‘x’ in statement 

with the number rolled on the die to determine how far the skier should be placed. 

Certain statements merely require the player to move according to the number shown on 

the die. The conditional statements like “if”, “switch” and “while” statement requires the 

player to dice again, test the condition and move accordingly. Other statements such as 

the “goto”, “continue” and “return” statement forces players to position their skiers at 

specific locations on the game board. The complete set of instructions that comes along 

with the C-Jump board game can be found at Appendix section of this report. An 

animated application of the game rules can now be downloaded from website of C-Jump 

(www.c-jump.com). Table 2 summarizes the game rules as to how the player should 

move his or her skier for a particular type of statement.   

 

Table 2: Types of movements in C-Jump  

 

Programming 
Statement 

Example of 
Statement 

Type of Movement 

if if(x==1) 
while loop while(x>0) 
switch switch(x) 

The player is awarded a free roll; replace ‘x’ 
with the number rolled on the die and then test 
the condition. 

variable declaration int x 
function declaration int main() 
open curly brace { 
close curly brace } 
label jump: 
case case 1: 
else  
break  
default  

Move downhill accordingly to the number rolled 
on the die. 
 

plus operator x + 2 
increment operator x++ 
minus operator 6 - x 
decrement operator  x-- 
multiply operator x*x 
divide operator x/x 

Replace ‘x’ with the number rolled on the die, 
perform the operation and move accordingly. 

goto goto jump Place the skier to the square labeled ‘jump:’ 
return return x The skier moves pass the finish line. 
continue  Place the skier back to ‘while’. 

 



2828

2.5.6 Depth of C-Jump 

 

Table 3 illustrates types of programming statement found in C-Jump. It consists of 21 

types of programming statements. In total, there are about 145 statements on the game 

board. The table also shows the number of occurrence of a particular type of statement.  

 

Table 3: Programming statements in C-Jump 

 

No Programming 
Statement 

Example of Statement Number of Squares on the 
Game Board 

1 if if(x==1) 8 
2 while loop while(x>0) 4 
3 switch switch(x) 1 
4 variable declaration int x 1 
5 function declaration int main() 1 
6 open curly brace { 10 
7 close curly brace } 10 
8 plus operator x + 2 52 
9 increment operator X++ 11 
10 minus operator 6 - x 9 
11 decrement operator  x-- 10 
12 multiply operator x * x 6 
13 divide operator x / x 4 
14 goto goto jump 1 
15 label jump: 1 
16 case case 1: 3 
17 return return x 1 
18 else  4 
19 continue  1 
20 break  6 
21 default  1 
  Total 145 

 



2929

The following chart (Figure 10) clearly illustrates the frequency of programming 

statements in C-Jump. It is obvious that many of the statements are arithmetic statements 

involving the plus (+) operator.   

Types of statements covered in C-Jump

0 5 10 15 20 25 30 35 40 45 50 55

if

while loop

switch

variable declaration

function declaration

open curly brace

close curly brace

plus operator

increment operator

minus operator

decrement operator 

multiply operator

divide operator

goto

label

case

return

else

continue

break

default

P
ro

gr
am

m
in

g 
S

ta
te

m
en

t

Frequency

 

Figure 10: Programming statements in C-Jump 

 

Programming statements in C-Jump 



3030

2.5.7 People’s Views about the C-Jump 

 

There seems to be contradicting views about the educational use of C-Jump. Some people 

find it as a worthwhile innovation whilst others do not see the point of having one. The 

following opinions are quoted from various sources on the Internet.      

 

“This is a smart and interesting way to teach ‘simple computer programming syntax’ to 

students. (Smith, 2005) ” 

 

“I don't really see a whole lot of value in teaching children through this method as it 

introduces the concepts pretty abstractly and in a way that is not representative of a real 

computer program. Furthermore you're not *doing* anything other than adding and 

subtracting from the die roll so I do not believe many children will really see any point to 

it (at least in Monopoly you're bankrupting your friends and in Mouse Trap you get to set 

off the cool Goldberg device). (BoardGeek.com, 2005) ” 

 

“Wow, I've gotta say, as a programmer, this seems like a great way to introduce my non-

geeky friends and wife to the joy of programming, and kids too. (Deanh, 2005)” 

 

Below are selected concerns and opinions by some commentators of C-Jump quoted from 

JWZ (2005): 

 

- “X isn't quite a variable. Take a look through the rules.” 

 

- “Great idea, but not well done. Look at the numbers in the if and switch statements 

here. The first two cases can't be reached.” 

 

- “Where's the danger? A game without danger is no fun at all. A race is all well and 

good, but what players really want is to avoid going to jail or to score the 

community chest or pawn the most valuable properties. Introduce some security 

http://www.c-jump.com/pagerules02.html


3131

concepts. Get kids used to the idea of a buffer overrun (skiing off a cliff?), poor 

input validation (forged ski ticket?), and other things …” 

 

- “Great idea, but not well done. Look at the numbers in the if and switch statements 

here. The first two cases can't be reached.”  

 

- “Where's the danger? A game without danger is no fun at all. A race is all well and 

good, but what players really want is to avoid going to jail or to score the 

community chest …” 

 

- “How does "roll a die and do whatever the game tells you to" qualify as a fun 

game?” 

 

- “Does the game ever halt?” 

 

- “The scheduler worries me: With multiple skiers of the same color on the board, 

players may choose any of their skiers to move."  

 

- “… i think i just fell asleep reading the rules.” 



3232

METHODOLOGY AND FINDINGS 

 

3.1 Introduction 

 

Several research techniques were employed to gather the necessary information for the 

study of C-Jump. Data was collected in various forms by observing students playing the 

game, tape recording their comments, making own field notes, distributing questionnaires 

to get feedback from the players and also interviewing educators that have taught 

programming courses. 

 

3.2 Participant Observation 

 

Twenty IT undergraduate students who were enrolled for the first programming course, 

CSEB114 Principles of Programming at Universiti Tenaga Nasional (UNITEN) were 

scheduled to play the game while their reactions and gestures are being closely 

monitored. Objective of the observation was to perceive any interesting issues involved 

in playing the game. There was only 1 C-Jump board game available for testing. Due to 

this, a simple schedule was prepared to get different groups of students to play the game. 

The C-Jump could only engage 2 to 4 players in one single game session, and therefore 

the participants were divided into 5 groups with each consisting of 4 players. 

 

During the exercise, actions and gestures of each of the group member was carefully 

observed. Each group observation result was tabulated into 3 parts: early game, mid game 

and end game (see Table 4). Indirectly, the observation was useful to notice any 

observable pitfalls of the game. 

 

 



3333

Table 4: Observation results 

 

Early game: - Only 1 skier per player. 
- Players directly started to read the instructions. 
- Repeatedly read the instructions. 
- Continuously added the value of the previous x. 
- No clear idea on how to start the game, restarted the game 

several times.       
- Players looked frustrated. 

Mid game: 
 

- Players played very inconsistently, sometimes evaluating the 
conditional statements halfway through every move and 
sometimes only when the skier was placed there. 

- One of the players did place his skier outside the provided 
squares. It seemed that the orange arrow was not noticeable.   

Group 1 

End game: 
 

- Players counted backwards when the number of steps was 
big, thinking it is similar to the classic Snakes and Ladders. 

- Skiers already at “return x” but player still continued to 
playing the game. 

Early game: - Only 1 skier per player. 
- After placing the skier on the squares, players made attempts 

to understand what the statements meant by reading the 
instructions.  

Mid game: 
 

- Player kept evaluating the conditional statements halfway of 
every move. 

- Players look excited. 

Group 2 

End game: 
 

- Players not sure how to proceed when their skier was placed 
on the “return x” statement. They were confused about where 
is the “ski base” when they referred the instructions for 
guidance.  

Early game: - Only 1 skier per player. 
- First, players continuously added the value of the previous x. 
- Then, players made moves according to the number shown 

on the dice, disregarding the statement in each square.    
Mid game: 
 

- Player kept evaluating the conditional statements halfway of 
every move. 

- Players look excited. 

Group 3 

End game: 
 

- Players counted backwards when the number of steps was 
big, thinking it is similar to the classic Snakes and Ladders. 

Early game: - Only 1 skier per player. 
- Players immediately read the instructions to know what the 

statements meant. 
Mid game: 
 

- Player kept evaluating the conditional statements halfway 
through every move. 

Group 4 

End game: 
 

- At the “return x”, players still continued to roll the dice to 
obtain a 1 to finish the game. 

Early game: - Only 1 skier per player. 
- No clear idea on how to start the game, restarted the game 

several times.       
- Players look puzzled. 

Mid game: 
 

- Player kept evaluating the conditional statements halfway 
through every move. 

Group 5 

End game: 
 

- Players repeatedly read the instruction to know what “return 
x” means. 



3434

3.3 Tape Recording 

 

Participants’ verbal communication while they were playing the game was tape recorded. 

The purpose of tape recording the game session was to ensure that every single comment 

made by each player was noted without fail. Certain comments that have frequently 

occurred were taken as more important than if it only rarely occurred. The number of 

times a particular comment or similar was counted and comments that turns out to be the 

greatest was then be identified as the greatest problem in the game. Player’s verbal 

comments while playing the C-Jump board game are showed in Table 5.  

 

Table 5: Players comments 

 

- Why do we have 2 pawns of the same color? 
 
- I am ready to bet what we did is all wrong. 
 
- The instructions are not clear. 
 
- The instruction doesn’t explain how we should move. 
 
- We don’t have any clue about how we should play the game. 
 
- Do we continue adding the x value? 
 
- What do return x actually means? 
 
- I feel something is wrong somewhere. 
 
- Where is ski base? 
 
- How do we start, any tips for beginners? 
 

 



3535

3.4 Field Notes  

 

This method is about making own notes against the comments made by members of each 

group while they play the board game. The objective of making own field notes while the 

participants played the game was to identify any significant comments that may not be 

the most frequent but gives an insight of the game studied. The field notes results are 

shown in Table 6. 

Table 6: Field notes results 

 

- The game is teaching us something, before this we never know what is x+2.  
 
- We only learn basic arithmetic from this game.  
 
- Players have limited things to do in the game, so there should be more options.  
 
- This game is boring. 
 
- We can’t see the motive of playing this game; we are not sure where are we heading. 
   
- How does skiing relates to programming? 
 
- How can we learn C++ and Java from this board game?   
 
- This game is useful for people who are in the process of learning programming. It will help 

beginners to visualize how certain programming statement work. I.e. how the x++ statement 
works.  

 
- The arithmetic statements of C-Jump should be replaced with other types of statements. 
 



3636

3.5 Questionnaires 

 

Upon finishing the game, every participant was requested to complete a set of 

questionnaire consisting of several statements relating to five general areas: playability, 

rules, learning value, fun factor and aesthetic appearance of the game. The objective of 

the questionnaire was to obtain students’ feedback towards the C-Jump board game 

specifically on the 5 mentioned areas. These statements were used as the main instrument 

in obtaining a good insight about what students feel about the game. This technique was 

also useful in obtaining personal views from the participants especially from those that 

were less expressive during the game session.   

 

The following statements were given out to the participants after completing the C-Jump 

session. Participants were asked to evaluate the extent to which they agreed with the 

statements on a scale from 1 to 5 (1, strongly disagree; 2, tend to disagree; 3, neither 

disagree nor agree; 4, tend to agree; 5, strongly agree). In addition, a general comment 

section was included for any additional suggestions or comments.  

 

- Statement 1: C-Jump is playable board game. 

 

The above statement of the questionnaire deals with the playability factor the game. The 

objective of this statement was to determine if C-Jump is accepted as a game that can be 

played by people.   

 

- Statement 2: Rules of the C-Jump board game were clear enough for players to 

understand how the game should be played. 

 

The above statement of the questionnaire relates to clarity of rules of the game. The 

objective of this statement was to determine whether the rules of the board game were 

unambiguous and easily understood by the players.  

   



3737

- Statement 3: I have learnt the basic programming concepts and syntaxes from 

playing the C-Jump board game. 

 

The above statement refers to the educational value of the game. This statement was 

acquired to measure the programming knowledge gained from playing the game.   

 

- Statement 4: C-Jump is an interesting and fun board game. 

 

The above statement of the questionnaire is about the fun factor the game. This statement 

was aimed to investigate whether the players were having fun while they were playing 

the board game.   

 

- Statement 5: C-Jump board game looks attractive and appealing to me. 

 

The above statement refers to the aesthetic appearance of the game. The objective of this 

statement was to determine the consensus about look and feel of the board game.  

 

- Statement 6: Please write in anything else that you would like to tell us about the 

C-Jump board game. 

 

The above is an added statement in the questionnaire, which was aimed to take note of 

any other information related to the C-Jump board game that the participant wants to 

highlight. 

   

Responses for the first 5 statements are tabulated in Table 7. The mean score and 

standard deviation are also calculated and displayed accordingly. These results is referred 

and discussed in great detail in the following chapter (Chapter 2: Analysis). Other 

comments made by the respondents are displayed in Table 8.     



3838

Table 7: Response for the five evaluation measures (Question 1 to 5) 

 

No Question 1 
(strongly 
disagree) 

2  
(tend to 

disagree) 

3 
(neither 
disagree 

nor 
agree) 

4  
(tend to 
agree) 

5 
(strongly 
agree) 

Mean 
Score  

(x) 

Standard 
Deviation  

(σ) 

1 C-Jump is 
playable 
board game. 

2 1 4 8 5 3.65 
 
 

1.19 
 
 

2 Rules of the 
C-Jump 
board game 
were clear 
enough for 
players to 
understand 
how the 
game should 
be played. 

3 7 4 4 2 2.75 
 
 
 
 
 
 
 
 
 

1.22 
 
 
 
 
 
 
 
 
 

3 I have learnt 
the basic 
programming 
concepts and 
syntaxes 
from playing 
the C-Jump 
board game. 

0 2 5 11 2 3.65 
 
 
 
 
 
 
 

0.79 
 
 
 
 
 
 
 

4 C-Jump is an 
interesting 
and fun 
board game. 

0 2 5 8 5 3.8 
 
 

 

0.93 
 
 

 
5 C-Jump 

board game 
looks 
attractive and 
appealing to 
me. 

1 2 5 9 3 3.55 
 
 
 
 
 

1.02 
 
 
 
 
 

 

-



3939

Table 8: Comments from respondents (Question 6) 

 

No Question  Participants Response  
6 Please write in anything 

else that you would like 
to tell us about the C-
Jump board game. 

- C-Jump should be made more comprehensive and 
complicated if it will be used by undergraduate students.  

 
- The game rules are confusing but it is good for students to 

start learning computer programming. 
 
- C-Jump features the basic code programming knowledge 

which will definitely help to increase the knowledge of 
students. 

 
- The theme “skiing” won’t attract much attraction.  
 
- An interesting game that teaches programming but it isn’t 

suitable for people in Malaysia, as we are far behind compared 
to others. 

 
- It is not suitable for children below 11 and it is suitable for 

student age 12 above and for those have programming 
knowledge.  

 
- C-Jump board game must have a complete set of rules so that 

it can be played by both children and adults.  
 
- At first, I couldn’t understand the game and it appeared boring 

to me but later when I understood it, its fun! 
 
- Need to make this game more thrilling and interesting with 

various options. 
 
- The game finishes very fast.  
 
- I don’t understand the main concept of the game.  
 
- A good and challenging game. We didn’t know at first how to 

play it but after been taught, it was fun and interesting. We 
should play these games more in the class routines.  

 
- The game was enjoyable but would be more interesting if the 

instructions were clear. 
 
- The game is like a maze for those who just started learning 

programming. 
 
- The game is fun but the instructions are confusing. 

 



4040

3.6 Expert Interviews 

 

The C-Jump board game is being carefully examined to see the possibility of using it as 

tool to aid students to learn basic computer programming. Besides gathering feedback 

from the novice students, it was fairly important to obtain what the lecturers teaching the 

programming course feel about using the C-Jump in their classrooms. Five lecturers 

teaching programming languages at UNITEN were interviewed. During the interview, the 

C-Jump board game was first played by the lecturers and then the following questions 

were answered. Lecturers’ responses for the five questions are presented in Table 9.  

 

- Question 1: What are some of the frequent problems faced by students taking the 

first programming course? 

 

The above question was aimed to identify common problems experienced by students 

taking the first computer programming course.  

 

- Question 2: What is your opinion about using a board game to introduce basic 

computer programming to students? 

 

The above question was aimed to determine lecturers’ general opinion about using a 

board game as tool to support the traditional methods of teaching programming to 

students.    

 

- Question 3: What is your opinion about using the C-Jump board game to 

introduce basic computer programming to students? 

 

The above question was posed to determine lecturers’ personal opinion about using the 

C-Jump to introduce programming to tertiary level students. 

 

- Question 4: What are your comments about the learning content (programming 

statements and the syntax) provided in the C-Jump?  



4141

 

The above question was aimed to determine the appropriateness of the basic 

programming content covered in the game.  

 

- Question 5: What are your suggestions to improve the C-Jump board game so it 

could be used as tool to introduce programming to tertiary level students?  

 

The above question was raised to determine lecturers’ suggestions to improve the C-Jump 

board game as an effective tool to introduce basic programming to IT undergraduates.   

 



4242

Table 9: Expert interviews’ results 

 

No Question Response from the Lecturers 
1 What are some of the 

frequent problems faced 
by students taking the 
first programming 
course? 

L1: Students face problems to understand logics and syntax. 
 
L2: Students face problems in understanding the programming 
concept. They don’t know how to learn programming 
languages. They just read their notes and they don’t try the 
exercises. They can’t apply what was taught in the class when 
they are given problems to be solved.   
  
L3: Students’ main problem is to solve problems and to come 
up with the algorithm. They also cannot visualize how the 
syntax works, for instance how a loop executes in a program. 
They do not know where to start in programming and they have 
problems in memorizing the syntax.   
 
L4: The students do not understand about problem solving. 
Students don’t have good knowledge of how to solve the 
problem. Some of maybe good at the syntax but knowing the 
language doesn’t help them to solve any problem. We also 
have a group of students who cannot learn the syntax easily; 
they find the language itself is difficult. They are carried away 
with notations, semicolons, quotations, punctuations. Currently, 
a lot of our students have difficulties with the syntax.  
 
L5: We are responsible our selves as educators to follow the 
syllabus, and we right away try to teach them coding instead of 
programming. As a result, the students with the characteristic of 
being so visual are forced to imagine something abstract i.e. 
the coding system, syntax of the language, declaration of the 
variable, how the computer organization works, why you need 
declaration and etc. Most of the programming books start with 
“Hello World!” and students tend to wonder what that actually 
means. Instead of explaining programming, the book explains 
that the printf statement prints, scanf reads data and then it will 
print “Hello World!” at the end of this. The students are then lost 
into syntactical events i.e. semicolon, braces, quotes, etc. The 
students are confused between programming and coding which 
makes them to dislike programming. I believe it is because of 
our approach, we must teach them programming before coding. 
 

2 What is your opinion 
about using a board 
game to introduce basic 
computer programming 
to students? 

L1: Game is an interesting tool to attract the interest of students 
to learn programming. It is a good start to introduce anything 
learning process. It is a good tool to improve learning. 
 
L2: It can be done outside of formal lectures hours or we can 
have it as a quiz or something in groups, who wins faster will be 
the winner. It can be used to make learning more interesting but 
it is just a supplementary and optional thing, which can’t replace 
the formal lectures. It can probably get the interest of students 
who dislike programming to entice them in learning.     
 
L3: Game is a good alternative for teaching as compared to the 



4343

PowerPoint presentations. It would be more fun to use a game 
to teach programming. 
 
L4: It is a good idea but we must have proper tools and 
infrastructure. We must make sure that the game has good 
regulations or rules. Anyhow, we can’t standardized the way we 
teach because some students like games and some may not 
like to play games to learn things; students who do not like 
games may prefer the formal education. Games are only meant 
for a different target group who love to play games. So, you can 
use that advantage of people who like to play games to instill 
knowledge that will be beneficial to them in the education 
system. However, students may not go through certain 
sequences or they may take shortcuts to reach the final 
finishing line. Students maybe keen in moving because they 
want to win and probably they did not really observe the steps. 
Students may just want to win the game but not to learn from 
that game.       
 
L5: I haven’t seen a good game which can teach programming. 
I don’t play game anyway so I am totally illiterate in terms of 
games. I am from the older generation, I never believe that and 
I don’t like it. 
 

3 What is your opinion 
about using the C-Jump 
board game to introduce 
basic computer 
programming to 
students? 

L1: Generally, I would very much encourage the use of this 
game to introduce programming. Perhaps, the C-Jump could be 
used during the first week of the programming course. Usually, 
we will not cover much in this week. This is to create the 
interest in the students despite giving them basic idea of what 
programming is all about. If C-Jump is played regularly, each 
statement presented in the game will automatically be installed 
in the players mind. For instance, the player will know how a 
switch statements work. Students will learn the basic 
programming statements by playing the game.  
 
L2: The person who loses in the game would learn more than 
the person who wins the game. C-Jump doesn’t meet the 
objective of the game, which is to get all players to learn the 
fundamentals of computer programming by playing the game. 
Players could possibly escape all the conditional statements in 
the game. Students playing this game must be guided by a 
teacher. These students may play the game wrongly. They 
might also interpret the programming statements incorrectly 
and may then carry the wrong interpretation with them.   
   
L3: The game is presented very well. After playing the C-Jump, 
I realized that it is not a good game to introduce programming 
to students. It will confuse the students even more. Students 
will only learn basic arithmetic i.e. calculating x+1 and x-1. Even 
the if statement doesn’t teach much. I can’t see the flow of 
evaluating the conditional if condition as true or false. In both 
ways, the players get to proceed in the game without thinking 
much about the difference of evaluating the ‘if statement’ as 
true or false. There are only a few while statements and if the 
players crosses over these while statements, he or she will not 
learn anything about the while statement. The learning of 



4444

programming concepts comes from the game instructions and 
not from the game itself.  
 
L4: C-Jump might not be suitable for students at the university. 
We got to ensure that they have more understanding about the 
programming. Students may end up playing the game without 
going through certain syntax at all. For instance, someone who 
never got to play a while loop. Students may be playing this 
game several times but coincidently never got to learn ‘while’ 
and therefore the lecturer cannot penalized him for not learning 
it because he simple never got the chance. So, it is important to 
make sure that everybody learns everything in a standard way. 
So, this board game might not be so appropriate. Nevertheless, 
this game can be played by students before they take the 
programming course. It cannot be part of the programming 
course or syllabus. It could be a pre-introductory programming 
to students. Students will be able to expose themselves about 
how a computer may behave, what it means by branching, what 
it means by looping, and what does a particular statement 
mean. So, C-Jump is useful in giving the new students a good 
start on programming before they actually attend the formal 
lectures.     
 
L5: I don’t recommend it because C-Jump is enforcing coding. 
 

4 What are your comments 
about the learning 
content (programming 
statements and the 
syntax) provided in the C-
Jump? 

L1: C-Jump is specifically focuses on the C language. The 
game covers C programming syntax. C-Jump will help students 
to understand the logic (flow of the statements) i.e. if(x==1) and 
operators i.e. x++. x++ could be a trivial arithmetic statement 
but someone who has zero knowledge on programming will 
take time to digest it. 
 
L2: The statements are simple and would suite the beginners. 
There lots of arithmetic statements.  
 
L3: C-Jump consist of very basic programming statement i.e. int 
declaration, if else, switch and while. C-Jump should introduce 
functions to its players. Majority of the statements covered in C-
Jump are basic arithmetic and many statements only require 
players to move down accordingly to the number rolled on the 
dice.  
 
L4: It comprises of programming syntaxes. Players are required 
to identify what the syntax means. I.e. ‘x--’ is a C program 
syntax and not a normal arithmetic symbol. By learning this 
syntax, the players will be able to know what is meant by --. It 
will actually help players to learn some syntax. Players will 
never see these statements like x++ anywhere else except in 
the C program. So, players will be exposed to this ++ symbol 
even before he or she go into the programming class. Anyhow, 
players will only learn about the syntax and not about any 
concept. There is some amount of learning for a new comer.   
 
The purpose of this game is to introduce basic programming 
concepts. It is quite comprehensive for a game that teaches 
basic programming concepts. It covers variables, arithmetic 



4545

operations, the three control structures (sequence, selection 
and repetition) and jump statements (goto, continue and break). 
If students who really play and explore it with proper 
understanding of the correct rules, then they should be able to 
learn something. Programming is about both arithmetic and 
logic, and so it is C-Jump. 
        
L5: It is very primitive and very simple to learn. Each time you 
throw the dice, it will change the variable and that is confusing 
and does not really happen in the context of programming. 
Association of throwing the dice is an assignment statement to 
assign variable x, and there is only one x. Once you declared 
an initialized variable, change of value of that variable will be 
depending on the course of the program. So, once the variable 
is initialized to a value, statements like x+1and x-- should 
change the value and not the dice.    
 

5 What are your 
suggestions to improve 
the C-Jump board game 
so it could be used as 
tool to introduce 
programming to tertiary 
level students?  
 

L1: This game should first be tested with 2 different groups of 
students, i.e. students having some programming knowledge 
and students without any programming knowledge. After that, 
see if they have mastered the logics or the syntax. Maybe we 
should add different syntax in the game. For instance, adding 
nested if statement, for loop, do while, etc.  
 
L2: Need to rearrange the statements on the board to ensure 
every player gets a chance to evaluate some conditional 
statements. Add more statements i.e. assignment statements, 
nested statements, etc. Having a computerized board game 
that could be monitored and regulated. If students play it 
wrongly, then it should hint the students by giving a beep 
sound. If the students do not follow the correct flow of the 
program, then we could inform them. The game should be 
guided to ensure the students get to understand the concepts 
correctly at the first time itself or not it would be staying with 
them forever.  
 
L3: First we need to improve the instructions. For instance, it is 
unclear of what the colors of the squares should mean. I would 
suggest rearranging the game instructions by separating them 
into two parts, how to play the game and what the syntax 
means. Then we need to reduce the arithmetic statements in 
the game and replace them with other types statements. Add 
function calls in the game. Have 1 small main function that calls 
other functions that returns a value.      
 
L4: Not a bad game but it is just that the rules are not clearly 
stated, maybe they should state with more examples. Anyhow 
the virtual tour which is downloadable from the website is 
helpful in understanding how to play the game. If we were to 
use this game for university tertiary level, then your assessment 
cannot be based on exams. For tertiary level education, we 
normally use exams to assess if the students have learned 
something. When we have an exam, it is difficult to make sure 
that the student has learned everything using a game. For 
instance, how do you ensure that the student have really 
learned about the ‘default’ statement? There is a possibility of 



4646

not getting to place the skier on the ‘default’ statement. This 
may be possible by having a computerized board game where 
somehow every player is maybe forced to go into at least 1 
sequence structure, 1 selection structure and 1 repetition 
structure. The game should be able to keep track of the number 
of times each player has entered a loop, if else structure, etc. 
Having done this, you can somehow program it in such a way 
that the player has experienced all the basic aspects of 
programming while playing the game.  
 
L5: We have to think of some other game which will be able to 
teach programming instead of coding. 
 

 



4747

ANALYSIS 

 

4.1 Students and the C-Jump board game 

 

4.1.1 Students’ views on the ability to play the game 

 

Figure 11 shows students responses towards the ability to play the C-Jump board game. 

The mean score of this statement is 3.65 ± 1.19. Clearly, the majority of the students 

(78%) agree that C-Jump is a playable game. From the observation, some of the students 

immediately started to play the game and some were repeatedly reading the instructions 

to learn how to play. Anyhow, the majority of the groups could play the game although 

most of them were not playing correctly. Sixteen per cent of the students claimed that 

they neither disagree nor agree that the game is playable. Only 6% disagree that it is 

playable. Perhaps, these were the students who looked very puzzled during the C-Jump 

session and patiently waited for other participants to start the game. These finding 

indicates that generally students would be able to play the game even if they were to play 

it incorrectly.  

 

C-Jump is playable board game.

(tend to agree)
44%

(strongly agree)
34%

(neither disagree nor 
agree)
16%

(strongly disagree)
3% (tend to disagree)

3%

 

Figure 11: Playability 

 

C-Jump is a playable board game. 



4848

4.1.2 Students’ views on the clarity of the game rules  

 

Figure 12 shows students response towards the clarity of the game rules. The mean score 

of this statement is 2.75 ± 1.22.  About half of the students (48%) agree that the rules 

were clear enough for them to understand how C-Jump should be played. Thirty per cent 

claim that the game rules were ambiguous. One of the students commented that:  

 

The game rules are confusing but it is good for students to start learning 

computer programming. C-Jump board game must have a complete set of rules so 

that it can be played by both children and adults.  

Student 

 

Some students (22%) neither disagree nor agree that the rules were clear. Perhaps, these 

students find that are some parts of the game rules are clear and others need to be 

improved. From the observation, it was clear that some of the instructions are rather 

confusing. For instance, almost all the students were not sure about how to proceed with 

the game when their skiers were stopped at the “return x” statement. The instruction were 

misleading due to the students interpreted it differently. Some of them restarted the game 

and some just finished the game.  

 

Despite that, most of the comments noted from the recorded tape are negative comments 

related to the games instruction. Although majority of the students find that the game 

rules are clear, this finding reveals that some of the instructions are rather confusing and 

should be revised.  

 



4949

Rules of the C-Jump board game were clear enough fo r players 
to understand how the game should be played.

(strongly disagree)
5%

(tend to disagree)
25%

(neither disagree nor 
agree)
22%

(tend to agree)
30%

(strongly agree)
18%

 

Figure 12: Clarity of rules 

 

4.1.3 Students’ views on the learning aspects of the game  

 

Figure 13 depicts whether the students have learned the basic programming concepts and 

syntaxes from the C-Jump. The mean score of this statement is 3.65 ± 0.79. Majority of 

the students (74%) agree that they have either directly or indirectly learnt the basics of 

programming from the game.  

 

Very few students (5%) claimed that they didn’t gain any basic programming knowledge 

from the game. Perhaps, these students were just playing to win in the game or the game 

covered only very trivial programming content. Twenty one per cent of the students 

neither disagree nor agree that they learnt anything from the game. At the general 

comment section of the questionnaire, a student highlighted that the C-Jump should be 

adjusted to suit the university students. 

 

C-Jump should be made more comprehensive and complicated if it will be used by 

undergraduate students.  

Student 

 



5050

From field notes taken, one of the students commented that: 

  

We only learn basic arithmetic from this game.  

Student 

 

This finding provides that C-Jump is able to stimulate some basic programming 

knowledge while the students play the game. Anyhow, it is apparent that it is quite 

primitive and should be enhanced further to match the expectation of undergraduate 

students.  

 

I have learnt the basic programming concepts and sy ntaxes 
from playing the C-Jump board game.

(tend to agree)
60%

(neither disagree nor 
agree)
21%

(tend to disagree)
5%

(strongly disagree)
0%

(strongly agree)
14%

 

Figure 13: Educational value 

 

4.1.4 Students’ views on the fun factor of the game  

 

Figure 14 depicts whether the C-Jump was interesting and fun to the students. The mean 

score of this statement is 3.8 ± 0.93. Seventy five per cent of the students found the game 

interesting and was fun to play with. During the observation, it was noted that a number 

of the students were excited throughout the game session.   

 

At the general comment section, one of the students commented that the game is fun only 

if the players are able to understand it.   



5151

 

At first, I couldn’t understand the game and it appeared boring to me but later 

when I understood it, its fun! We should play these games more in the class 

routines. 

Student 

  

Only 5% of the students disagree that it was interesting and fun to them and 20% neither 

disagree nor agree with the statement. The results of the finding indicates that C-Jump is 

generally an interesting and fun game to its players.    

 

C-Jump is an interesting and fun board game.

(tend to agree)
42%

(strongly agree)
33%

(neither disagree nor 
agree)
20%

(tend to disagree)
5%

(strongly disagree)
0%

 

Figure 14: Fun factor 

 

4.1.5 Students’ views on the aesthetic appearance of the game  

 

Figure 15 represents students’ opinion about the aesthetic appearance of the game. The 

mean score of this statement is 3.55 ± 1.02. It is clear that majority of the students (72%) 

found the game attractive and appealing. Only a small number of the students (7%) found 

it otherwise. Twenty one per cent of them neither disagree nor agree that it was attractive 

and appealing.  

 



5252

Even though C-Jump is targeted for younger players (age 11 and above), results of the 

survey reports that it is attractive and appealing to undergraduate students (adults) as 

well.   

 

C-Jump board game looks attractive and appealing to  me.

(neither disagree nor 
agree)
21%

(tend to agree)
51%

(strongly agree)
21%

(tend to disagree)
6%

(strongly disagree)
1%

 

Figure 15: Aesthetic appearance 



5353

The following chart (Figure 16) provides that mean response for each of the category of 

evaluation by students. Overall, the responses were quite positive. The fun factor 

category were rated the highest, with a mean score of 3.8 ± 0.93. The lowest-scoring 

category was clarity of rules, with a mean square of 2.75 ± 1.22. These results generally 

indicate the best aspect of the game is that it is fun and interesting to play with and the 

worst aspect of the game are the game rules which are rather confusing or incomplete.  

 

Students' Views on the C-Jump Board Game  

3.65

2.75

3.65 3.8
3.55

0

1

2

3

4

5

Playability Clarity of Rules Educational
Value

Fun Factor Aesthetic
appearance

Li
ke

rt 
S

ca
le

 

Figure 16: Overall response of the five evaluation measures    

 



5454

4.2 Lecturers and the C-Jump board game 

 

4.2.1 Lecturers’ remarks about common problems experienced by students 

learning programming 

 

The lecturers generally agreed that the students face several challenges in learning their 

first programming course. Interestingly, they have different opinions on this issue. 

 

Some of the lecturers explained that the students face difficulty in visualizing what was 

taught in the class. The students are expected to imagine something very abstract, which 

they have never experienced before.   

 

They cannot visualize how the syntax works. For instance, how a loop executes in 

a program. 

Lecturer 

 

Most of the lecturers claimed that the students do not know how to do problem solving. 

In other words, they can’t breakdown a given problem into smaller parts. The students are 

carried away with notations, semicolons, quotations and punctuations.  

 

Students don’t have a good knowledge of how to solve the problems.  

Lecturer 

 

Lecturers’ comments also indicated that many students face difficulties with the syntax or 

coding. They have problems in memorizing and applying the syntax. One of the lecturer 

reported that many students merely read and memorize the notes without doing much 

practice on writing programs. As a result, they can’t apply their knowledge when they are 

given some problems. 

 

One lecturer generalized that the students are confused between programming (problem 

solving) and syntax (coding). He strongly suggests that the lecturers should first teach 



5555

and focus on programming instead of coding. It seems that, by doing so, students will not 

be lost into syntactical notation like semicolon, braces and quotes.  

 

4.2.2 Lecturers’ views about the use of games in teaching programming 

 

Most of the lecturers generally agreed with the idea of using games as an alternative tool 

to teach programming. Many of them claimed that the game is an effective tool to attract 

the attention of many students to learn and gain something. 

 

Majority of the lecturers feel that the game is just a supplementary to the lectures even 

though games can be used to make learning interesting. Formal lectures should still be 

the main medium of instruction and the educational games should be played outside of 

these formal lectures hours. A lecturer commented that it is a good tool to attract attention 

of students who dislike programming.     

 

It can probably get the interest of students who dislike programming to entice 

them in learning.     

Lecturer 

 

One lecturer has stated that we can’t formalize the idea of using games to teach 

something. This is due to the fact the some students may not like games and may still 

prefer the formal education over learning while playing.  

 

Another lecturer responded that he hasn’t seen any good game that can be used to teach 

programming to students. Moreover, he totally disagrees with the idea of using games in 

education. He never believed that it would be an effective approach to enforce learning.   

 



5656

4.2.3 Lecturers’ comments about using C-Jump to teach basic computer 

programming 

 

The lecturers had different opinions about the use of C-Jump as a tool to aid learning 

programming at tertiary level students. Some of the lecturers recommend the use of C-

Jump at the university because it is a game, and games can attract the interest of students 

to learn something. Anyhow, they propose it to be played by students before the formal 

lectures. Perhaps, it can be used during the first week of the lecture, i.e. when students are 

being introduced to programming. Students playing the C-Jump before attending the 

formal lectures will be able to expose themselves about how a computer behaves, 

branching, looping, and what certain programming statements mean.  

 

Some of the lecturers encourage the use of C-Jump upon believing that if the students 

were to play it quite frequently, they will somehow learn some programming statements. 

For instance, they will learn how a switch statement works. One lecturer somewhat 

agreed it to be used at tertiary level but highlighted that the game session must be guided 

by someone. This lecturer is concerned that the students may not be playing it correctly 

or they may be interpreting the statement wrongly. The students may end up confusing 

themselves even more if they are not assisted in playing C-Jump.   

 

Other lecturers discourage C-Jump for undergraduate students. They claim that it will 

confuse the students. Moreover, it doesn’t teach much. It mainly covers basic arithmetic 

like x+1 and x-1. One lecturer explained that we can’t use C-Jump for undergraduate 

students because we can’t assess them due to the possibility of not getting to learn all 

statements in the game. There are only a few different statements. For instance, there are 

very few “while” statements and if the player crosses over these statements, he or she will 

not learn anything about the “while” statement. One lecturer feels that the students would 

be learning the programming statements by reading it from the game instructions which 

maybe equivalent to reading from notes.   

 



5757

The learning of programming concepts comes from the game instructions and not 

from the game itself. 

Lecturer  

 

Another lecturer objects the use of C-Jump for tertiary level students because it enforces 

coding rather than programming. The game focuses more on the syntax instead of 

problem solving.  

 

4.2.4 Lecturers’ comments about learning content covered in the C-Jump 

 

Majority of the lecturers claimed that the C-Jump mainly covers basic arithmetic 

statements. Anyhow, one lecturer did stress that the “x++” might be trivial statement, but 

it is something very unique and would be a worthwhile knowledge for someone who has 

zero knowledge on programming.  

  

Some of the lecturers reported that the game covers enough for a game that teaches basic 

programming statements. It covers variables, arithmetic operations, the three control 

structures (sequence, selection and repetition) and jump statements (goto, continue and 

break). The lecturer added that if students really play and explore the game with proper 

understanding of the game rules, they should be able to learn something. 

 

One of the lecturers commented that C-Jump specifically focuses on C programming 

language. Players playing this game will only learn the C language. Another lecturer 

claimed that the players of this game will only get to learn about the syntax and not about 

any programming concept. He also added that there is surely some amount of learning for 

a new comer.   

 

Another lecturer claimed that C-Jump is very primitive and very simple to learn. 

Interestingly this lecturer has given an insight into how this game is contradicting with 

real programs. Each time the player throws the dice, it will change the contents of 

variable “x” which actually does not happen in the context of programming. In C-Jump, 



5858

association of throwing the dice is an assignment statement to assign variable “x”. In real 

programs, once you have initialized a declared variable, change of value of that variable 

will be depend on the course of the program. So, once the variable is initialized to a 

value, statements like x+1and x-- should change the value and not the dice.     

 

4.2.5 Lecturers’ views on improving the C-Jump 

 

The most common suggestion for improving the game was to improve the game 

instructions. The instructions need to be rephrased so that it is less ambiguous and the 

players could easily understand what they are supposed to do. The instructions also need 

to be reorganized so that the basic rules of the game are stated first and only then to state 

what each statement means and how the player should proceed.  

 

Lecturers’ comments also included suggestion to replace the many basic arithmetic 

statements with other distinctive programming statements. For instance, there should be 

other statements like the nested if, for loop and do while. One the lecturer suggested that 

the game should include functions as well. They could be several other functions, each 

containing a different control structure (sequence, selection and repetition) which should 

be called by the main function. The new functions should return value to the main 

function.  

 

Many of the lecturers suggested that the physical C-Jump board game should be 

transformed to a computerized board game. One lecturer explained that by having the 

game automated, we will able to keep track of the players’ progress in the game. It seems 

that currently the players can easily disobey the game rules and it is difficult to monitor 

every player’s moves on a physical board game. There should some beeping sound if the 

player has moved his or her skier incorrectly. Another lecturer did recommend that the 

computerized board game should be intelligent to ensure that every player gets to place 

the skier on a control statement on the board. This is to reduce the possibility of not 

getting a chance to learn the “if”, “switch” and the “while”. The lecture explained that if 

the player is almost finishing the game but has not placed the skier on any of the control 



5959

structures, then the player should be forced to enter into the final “while” statement on 

the board.       

 

The last interviewed lecturer totally disagreed with the idea of using this game for 

undergraduate students and therefore refused to suggest any improvements.   

  



6060

ISSUES, RECOMMENDATIONS AND SUMMARY 

 

5.1 Issues Emerging from the Study 

 

The finding provides that most of the students do not play the game correctly. They do 

not play according to the rules specified in the game instructions. Many of the students do 

not read the rules carefully and are very impatient to start the game directly. They seem 

to apply the rules of the classic Snakes and Ladders board game in C-Jump. 

 

Majority of the students do not understand how to play the game. They try various ways 

to play the game and restart all over several times. Quite often, they keep on replacing the 

“x” of the subsequent statement with the addition of the earlier statements. In other 

words, they seem to roll the dice only once. 

 

Most of the students do not understand how they should proceed the game when their 

skier is located on the “return x” statement. The game instruction provides the following: 

 

“ “return” statement returns skiers to the ski base. Regardless of a number 

rolled, the skier moves past the FINISH line. ” 

C-Jump 

 

The first sentence of the above instruction is interpreted as the need to restart all over. 

The second sentence of the instruction explains that the player finishes the game. The 

students are confused whether they should start all over or they finish the game. The 

students seem to wonder where is the “ski base” actually.  

 

From the observation, it is apparent that the game finishes very fast. Perhaps, it is because 

every group played C-Jump by using only 1 skier per player. Not even a single group 

chose to use or attempted to use both skiers to represent the players.   

 



6161

Many students seem to evaluate the “if” statements, “switch” statement and “while” 

statements halfway in their moves. The rule of not evaluating these statements in the 

middle of the move is not stated in the instructions given in the game box but is explained 

in the animated tutorial which can be downloaded from the website. 

 

C-Jump requires the players to replace the every ‘x’ with the number shown on the rolled 

die. There is no assignment statement on the game board but the players are required to 

assign a new value to the “x”. This is different from real programs, where once the 

variable is given a value, the value remains unchanged unless there is an assignment 

statement causing that action or there is some unary operator (++ or --) which will 

increase or decrease the original value by 1. Hence, the students may be confused when 

they see the real programs in the future.     

 

Students will not learn every distinctive statement available on the game board. They 

may not get the chance to place their skiers on every single statement. Some of the 

statements could be crossed by the player counting number steps rolled on the dice. As a 

result, they student will not get to learn the “switch” statement if he or she coincidently 

did not get place the skier on the “switch”.    

 

C-Jump comprises of too many arithmetic statements. Nearly 65% of the statements 

presented on the game board are basic arithmetic statements involving operators like plus 

(+), minus (-), multiply (*), divide (/), increment (++) and decrement (--). Therefore, 

most of the time, the player will be engaged in performing arithmetic operations instead 

learning other types of statements. Other than arithmetic operations, the game consists of 

several “if” statements, a few “while” statements, a “switch” statement and few other 

statements.         

 

Statements which are not arithmetic or a control structure (if, switch and while), merely 

requires the players to move downhill accordingly to the number rolled on the dice. 

When the player places his or her skier on the following statements (see Table 10), the 

player has nothing much to think or to learn but simply move on by counting the number 



6262

steps rolled on the die. In other words, the students don’t learn anything from these 

statements because they are not required to do anything special.    

 

Table 10: List of statements 

 

Programming Statement Example of Statement 
variable declaration int x 
function declaration int main() 
open curly brace { 
close curly brace } 
label jump: 
case case 1: 
else  
break  
default  

 

Most of the students do not attempt to understand what the statements on the game board 

means but are only interested to know how they should proceed from the current 

statement. The instructions seem to explain 2 things: first, the meaning or purpose of the 

statement and then how the player should move from there. It seems that majority of the 

students pay less attention to understand the statements in concern as they just want to 

know how to play the game. So, students just want to win the game and not learn from 

the game. This indicates that the students will not learn much if their motive is just to win 

the game. Winning the game does not necessarily mean that the students have gained 

more knowledge than the other players in the game.  

 

 

 

 



6363

5.2 Main Recommendations  

 

Results of the study indicates that certain aspects of the C-Jump board game should be 

enhanced further. Below are some recommendations for consideration that can be used 

for the future development of the game particularly as an effective tool for teaching 

computer programming to tertiary level students.   

 

5.2.1 Improvements to the game instructions 

 

Most respondents mainly suggested the game instructions to be revised. First, the 

instructions should be made to be unambiguous. By reading the whole instruction text 

once, the players should easily understand each rule of the game. There shouldn’t be any 

words which would make the players misconstrue its meaning. The instructions should be 

restructured in a manner that will help players to easily understand the game. First, 

general rules of the game should be informed. For instance, it is a general rule that 

players need to roll their dice again if their skier has stopped at the orange square. This 

sort of basic rule must be explained much earlier so that players get to have an overview 

of how the game should be played. Only then should there be rules concerning cases of 

placing the skier on different programming statements.    

 

Each rule of the game should be clearly defined in the instruction text. The finding 

clearly provides that almost every group of students evaluated the orange “if”, “switch” 

and “while” statement in the middle of their moves. It seems that this rule was missed out 

from the instruction text.   

 

Some of the respondents suggested the important rules of the game to be placed on the 

game board itself. The finding reveals that that many new players of the game read the 

game instructions quite frequently. There are about 24 different types of statements on 

the game and each of the statement may require a different move. The suggestion is to 

use a small portion of the large game board to provide information about the 



6464

programming statements and how to precede the skier from these statements. Perhaps, 

this will reduce the time involved in reading the rules from a separate paper. 

 

5.2.2 Modifications to the programming content  

 

The second most prominent recommendation is to reduce the number of basic arithmetic 

statements on the game board. Many respondents feel that these squares or space on the 

game should be replaced with other distinctive programming statements like the nested if 

and for loop, do while loop. Players should be able to learn a lot from this game.      

 

Some of respondents did highlight the idea of including functions in the game. Perhaps, 

the game board could be divided into a few functions. Each function should do an 

important task like finding the average value. There should be several functions calls and 

return values in the game. This will definitely help players especially the undergraduate 

students to visualize how functions work in real programs. They will also be able to 

understand the concepts of returning values from other functions. 

 

5.2.3 Transformation to a computerized board game 

 

Some of the respondents strongly suggested the transformation from the physical board 

game into a computerized board game. By having the board game computerized, various 

intelligent features could possibly be added.   

 

There could be 2 modes of play: having the skiers to be placed at the designated 

statements automatically and having the players to position the skiers on statements by 

themselves. The first mode is to allow players to observe how the game should be played. 

The player will be required to click at their respective buttons alternately. This will cause 

their respective skiers to be repositioned at a designated statement depending on the rules 

of the earlier statement.      

 



6565

Once the players have mastered the rules and the movements, the players can then choose 

to play the second mode, in which they will be placing their skier on the square 

containing the statement by them. Every movement of the skier will be closely 

monitored.  For instance, a beep sound will be triggered for any false positioning of the 

skiers. In other words, the players will be guided to play the game correctly. This is 

essential because it will help to ensure that the players learn to move the skier as expected 

or explained in the instruction. Perhaps, this will help them to visualize how certain 

programming statements work in real programs.   

 

It is an issue that many of the important statements in the game could be coincidently 

crossed over by the players. Hence, they might not learn anything about these missed 

statements. By having the board game automated, the players can possibly be forced to 

enter into “if”, “switch” or any possible statement. This is because the game board can be 

programmed to keep track of the number of statements experienced by the players. For 

example, the board game can be regulated to keep track of the number of “if” statements 

experienced by a particular player in a single game session. Having that tracked, if the 

player is almost ending the game but he or she did not place the skier on an “if” 

statement, then perhaps the board game can be programmed to force the player to 

experience the last “if” statement of the game. 

 

 



6666

5.3 Summary  

 

The C-Jump board game was studied in great detail to determine at the possibility of 

using it as useful tool to aid undergraduate students to learn programming. C-Jump is 

generally a good game to introduce basic programming statements to its players. It is 

actually target for players of age 11 and above but it was interesting to determine if it 

could benefit undergraduate students as well.  

  

Several techniques were employed to evaluate the game. Mainly, data was gathered from 

2 categories of respondents, i.e. the undergraduate students and the lecturers. Inputs and 

comments from both categories were analyzed accordingly. 

 

Generally, the C-Jump was well appreciated by the students. Though the game covered 

only basic statements, the finding indicates that there is surely some amount of 

programming knowledge to gain from this game. However, several issues were 

encountered while the game sessions were being closely observed. These issues were 

elaborated in length and certain recommendations to possibly overcome some to those 

issues were highlighted. It is great idea of attracting student to learn basic programming 

by using a game. Perhaps, the adjusted version of this game would greatly benefit many 

novices at tertiary level.          



6767

REFERENCES 

 
 
A History of Board Games. (2003). Astral Castle. 
< http://www.ccgs.com/games/ (15/11/2006) > 
 
Austin, R. G. (1940). “Greek Board Games”, Elliott Avedon Museum and Archive of 
Games University of Waterloo, Canada. 
< http://www.gamesmuseum.uwaterloo.ca/Archives/Austin/index.html (29/11/2006) > 
 
Barr, A.& Kessler, S. (1996). “Good Programmers Are Hard To Find: An Alternative 
Perspective on The Immigration Of Engineers”, Press Briefing, Stanford University 
Computer Industry Project.  
< http://www.stanford.edu/group/scip/avsgt/immigration1096.pdf (24/11/2006) > 
 
Block G. (2006). “Mitsubishi R&D's WarCraft III Panel”, ign.com. 
< http://gear.ign.com/articles/698/698241p1.html (26/2/2007) > 
 
BoardGameGeek , “Why Board Games are Better than Video Games”  
< http://www.boardgamegeek.com/geeklist/13879 (5/5/06)> 
 
BoardGameGeek (2005), Game: c-jump Computer Programming Board Game, Forum.  
< http://www.boardgamegeek.com/thread/79632 (10/1/2007) > 
 
Board Fun, (1998). “Types of Board Games”, Drawing Board.   
< http://library.thinkquest.org/4377/drawingboard.html (14/1/2007) > 
 
Board Games of the Future (2006). “Computer Engineers Bring a Bit of Virtual Reality 
to a Holiday Tradition”, Science Daily. 
< http://www.sciencedaily.com/videos/2006-11-11/ (26/2/2007) > 
 
CanBooks. (2003). “Ancient Board Games and the Nabataeans.” 
< http://nabataea.net/games3.html (29/11/2006) > 
 
Cohn, D. (2005). “C'mon Kids, Let's Play Programmer”, Wired News. 
< http://www.wired.com/news/technology/0,68872-0.html (24/11/2006) > 
 
Deanh. (2005). “C-Jump: Computer programming board game”, Make: technology on 
your time 
< http://www.makezine.com/blog/archive/2005/09/cjump_computer.html (26/2/2007)> 
 
de Boer, C. J. & Lamers, M.,H. (2004). “Electronic Augmentation of Traditional Board 
Games”, Leiden Institute for Advanced Computer Science, Leiden University, 
Netherlands.   
< http://www.clim.nl/personal/docs/SP1-DeBoer-Clim.pdf. (10/1/2007) > 
 



6868

Dragontamer. (2005). “Talk:AP Computer Science” 
< http://en.wikibooks.org/wiki/Talk:AP_Computer_Science (24/11/2006) > 
 
Entertaible. (2006). “LCD-Based Board Gaming from Philips”, Gizmodo. 
< http://gizmodo.com/gadgets/ces/entertaible-lcdbased-board-gaming-from-philips-146788.php 
(26/2/2007) > 
History of Sports and Games. History World.  
< http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=ac02 (29/10/2006) > 
 
Johnson, M. A. H., (2001) “Computer and Video Games Are "Not So Bad" 
But Books, Board Games, Activity Equipment Are Better”, News, Virginia Cooperation 
Extension.  
< http://www.ext.vt.edu/news/releases/121701/games.html (5/10/2006)> 
 
JWZ. (2005).  “C-Jump: Computer Programming Board Game”  
<http://jwz.livejournal.com/572429.html (20/3/06)> 
 
Kholodov, I. (2005). C-Jump. 
< http://www.c-jump.com (16/9/2006) > 
 
Learn to Love Board Games Again. (2005). “Learn to Love Board Games Again: 
100+ Ways to Rejuvenate the Games You Already Own”, Yehuda. 
< http://jergames.blogspot.com/2006/10/learn-to-love-board-games-again100.html (27/2/2007) > 
 
Morrison, P. (2005). “Peter Morrison's Board Gaming Philosophy Overview”, Morrison 
Games. 
< http://www.morrisongames.com/peter_morrison's_board_gaming_philosophy_overview.htm 
(10/1/2007) > 
 
Saari, M., (2004), “Simulation & Computer Integration in Board Games”, The Games 
Journal.  
< http://www.thegamesjournal.com/articles/ComputerIntegration.shtml (5/10/2006) > 
 
Smith, S. E. (2005). “Clickers, C-Jump”, Educause Connect. 
< http://connect.educause.edu/taxonomy/term/825,826 (10/1/2007) > 
 
The future of board games (2006). TomSoft. 
< http://blog.landspurg.net/the-future-of-board-gaming (26/2/2007) > 
 
The History of Board Games. (2002). Essortment.    
< http://w.v.essortment.com/historyofboard_rjyw.htm (15/11/2006) > 
 
Wikipedia contributors. (2006). “Board Game”, Wikipedia, The Free Encyclopedia. 
< http://en.wikipedia.org/w/index.php?title=Board_game&oldid=90538486 (27/11/2006) > 
 
 
 
 



6969

APPENDIX: RULES TO PLAY THE C-JUMP BOARD GAME 
 
                                                                                                                                                                                                          
 HOW TO PLAY  
   
 Introduction      
     Discover the fundamentals of computer programming by plying a game! 

 
c-jump  is a fun family game, benefiting learners of programming languages, such as C, 
C++ and Java. 
 
By moving around the board, entering loops, branching under conditional statements, the 
players gain physical experience of a complete game. Understanding of the internal action 
of computer is essential to understanding what software is. Static programs causes 
dynamic process in the computer. By playing the game, players see this process as a 
physical and special motion.  

 

   
 Players  
 2 to 4 players. 

 
 

 Age   
 Age 11+. 

 
 

 Equipment   
 One game board, one die, and sets of colored pawns representing skiers and 

snowboarders for each player. 
 

 

 Object Of The Game  
  First player to move all skiers past the FINISH line is the winner. 

 
 

 Setup   
Skiers and snowboarders line up at the START location and race along the ski trails, 
according to each player’s roll of die and board rules. 
 
Spaces on the board are shown as squares. Each square has a statement of a rule, 
borrowed from programming language. Semicolons “;” separate rules from each other.  
 
 Keyword “int” creates integer variable “x”. in the game, “x” 

represents the number rolled on the die. For example, if player rolls 
5, then x becomes equal to 5. From this location, skiers move 
downhill accordingly to the number rolled on the die.  

 “Main” is a name of the blue ski trail on the board. All computer 
programs have function named “main”. Functions define computer 
operations. The skier can move downhill number of steps rolled on 
the die. 

 

 
 
 
 
 
 
 

Opening brace “{“ indicates beginning of a ski trail. Closing brace “}“ 
ends the trail. The braces require no special calculation, and can be 
counted as free landing space. 

 

    
 

int x; 

int main( ) 

{ 

} 



7070

 
 
   
 Playing the Game  

Player rolls the die and moves one of his/her skiers, counting off the number of squares. 
The game can be played with one or more skiers of the same color on the board, players 
may choose any of their skiers to move. 
 
Before the move, if skier starts at a space with an arithmetic statement, players should 
calculate the number of steps by replacing “x” with the number rolled on the die. For 
example,  
 
 Means “add 2 to x”. The player must replace “x” with the number 

rolled on the die and add 2. if the player rolls 5, then number of 
steps becomes 7: 2 + 5 = 7. 
 
Same rule applies to other statements with arithmetic expressions: 
 
“6-x;” means “Subtract x from 6”. 
“2*x;” means “2 times x”. 
“x+x;” means “x plus x”.    
 

 means “x divided by x”. a number divided by itself equal one. 
Therefore, the player always gets to move one space from this 
location. 
 

 means “increment x by one”. The player should add one to the 
number rolled on the die. For example, if the number rolled is 4, the 
resulting number of steps is 5: 4 + 1 = 5. 
 

 

 means “decrement x by one”. The player should subtract one from 
the number rolled on the die. If the number rolled is one, it becomes 
0: 1 - 1 = 0. If the player rolls 1, the skier cannot move on that turn. 
  

 

x+2; 

x/x 

x++ 

x--; 



7171

  means “if x is equal to one”. A double equal sign “==” compares two 
numbers for equality.  
 
The condition “(x == 1)” is true when the number rolled on the die 
equals one. In all other cases this condition is false. 
 
When this condition is true, the skier enter orange ski trail on the 
right side of the “if”. After entering the “if” pathway, the player is 
awarded a free roll and can only move the same skier, when playing 
with more than one piece per player.  
 
When this condition is false, the skier must continue downhill, 
following the blue trail.  
 
Similar rules apply to all other “if” statements on the board: 
 
“if(x > 1)” means “if x is greater than one,” which is true for 2, 3, 4, 5, 
6 and false for 1. 
 
“if(x < 5)” means “if x is less than five,” which is true for 2, 3, 4 and 
false for 5 and 6. 
 

 

  The “else” keyword indicates a pathway that should be followed 
when condition of the previous “if” statement was false. From this 
location, a skier moves accordingly to the number rolled on the die. 
 

 

  means “while x is less than 4”. Keyword “while” test the condition the 
same way “if” does. An orange arrow at the end of the “while” 
pathway points back to the “while” space, allowing skier to make a 
loop. 
 
When condition “x < 4” is true, the skier enters the “while” pathway, 
counting off the number of steps accordingly to the number rolled on 
the die. The player is awarded one free roll and should move the 
same skier again.  
 
When the condition is false, the skier must continue downhill along 
the blue trail moves.  
 
The same rule applies to other “while” statements on the board. For 
example, “while (x > 0)” means “while x is greater than zero”. Since 
any number on the die is greater than zero, this pathway must 
always be entered by skiers starting at this location.   
 
When exiting from any loop, skiers should continue downhill, 
following the blue ski trail. 
    

 

  Keyword “goto” points skiers to the square labeled “jump:”. “Jump” is 
a label that gives a name to a particular location on the board. 
Labels allow “goto” statements to point to various places in a 
computer program. From both of these locations, a skier moves 
accordingly to the number rolled on the die. 
 

 

if (x==1) 

else 

 while (x < 4) 

 while (x > 0) 

goto jump; 

jump 



7272

  Starting at the “switch” statement location, skiers move to one of its 
labels. If number rolled on the die is 1, 2, or 3, the skier should move 
to the square labeled “case 1:”, “case 2:”  and “case 3:” respectively. 
The player is award one free roll and moves the same skier again. If 
the player rolls 4, 5, or 6, the skier follows the “default:” pathway. 
 
 
 
 
 
 
 
 
 
 

 

  Keyword “break” creates an exit from a loop or a “switch”. From this 
location, a skier moves the number of spaces rolled on the die. 
 

 

  Keyword “continue” forces the skier back to “while”. The skier moves 
accordingly to the number rolled on the dice. If there is more than 
one step in the move, the skier exits the loop and follows the blue 
trail. 
 

 

  “return” statement returns skiers to the ski base. Regardless of a 
number rolled, the skier moves past the FINISH line. 
  

 

    
 Finishing  the Game  
 To complete their goal, skiers must cross the FINISH line by exact number of steps, 

counting FINISH location as a square. If the number of steps is too big, the player must 
choose another skier, or skips the turn. 

 

   
 

switch(x) { 

case 1: 

case 2: 

case 3: 

default: 

break; 

continue; 

return x; } 


	EXECUTIVE SUMMARY
	
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1	Introduction
	1.2	Background
	1.3	Special Terms and Words
	1.4	Aims of the Study
	
	1.5	Outline of Subsequent Chapters
	
	LITERATURE REVIEW
	2.1	What is a Board Game?
	2.2	History of Board Games
	2.3	Nature of Board Games
	
	Luck
	Luck and Skill
	Skill
	Usually involves spinners, dice, and cards, and doesn't involve strategy.
	
	These games might include dice, spinners, and cards, but also include strategy and choices.
	These games don't use dice, spinners, or cards, and have nothing to do with luck. Skill games take lots of practice and include strategy.
	Easiest to develop
	Harder to develop
	Most difficult to develop
	Parcheesi, Candy Land, Life
	Monopoly, Sorry, Backgammon
	Chess, Checkers, Go, Othello
	These games usually are the simplest to play, because they don't require much thinking. Most of the time they turn out as a race.
	
	
	Anything more complex than spinning a spinner, rolling the dice, or picking a card, would fall under the catagory of luck and skill. A luck and skill game must require some luck or it will fall under the category of a skill game.
	These games consist of no luck at all. Skill games usually have many different rules, and give you€many choices on where to move, which piece to move, and how to win. Skill games usually include many pieces, involve strategy, and require concentration to play



	
	2.4	Why Board Games are better than Electronic Games
	
	2.5	Modern Board Games
	2.5	About the C-Jump Board Game
	2.5.1	Introduction
	2.5.2	Board Game Design
	2.5.3	The Look and Feel
	
	The back cover of the game box (see Figure 8) provides a general idea about the board game. Specifically, it dictates the basic rules of the game and the educational benefits of playing the game. The motto of the game ﬁRace down a mountain, think like a computer programmer!ﬂ is clearly presented at the top left corner of the game box and a snapshot of the whole game board is displayed at the right portion of the back cover.
	2.5.4	The Game Board
	
	2.5.5	The Rules
	2.5.6	Depth of C-Jump
	
	
	
	
	2.5.7	People™s Views about the C-Jump




	ﬁWhere's the danger? A game without danger is no fun at all. A race is all well and good, but what players really want is to avoid going to jail or to score the community chest or pawn the most valuable properties. Introduce some security concepts. Get kids used to the idea of a buffer overrun (skiing off a cliff?), poor input validation (forged ski ticket?), and other things –ﬂ
	
	METHODOLOGY AND FINDINGS
	3.2	Participant Observation
	3.3	Tape Recording
	3.4	Field Notes
	
	3.5	Questionnaires
	
	
	
	
	
	
	No







	ANALYSIS
	4.1	Students and the C-Jump board game
	4.1.1	Students™ views on the ability to play the game
	The following chart (Figure 16) provides that mean response for each of the category of evaluation by students. Overall, the responses were quite positive. The fun factor category were rated the highest, with a mean score of 3.8 ± 0.93. The lowest-scoring category was clarity of rules, with a mean square of 2.75 ± 1.22. These results generally indicate the best aspect of the game is that it is fun and interesting to play with and the worst aspect of the game are the game rules which are rather confusing or incomplete.
	
	
	4.2	Lecturers and the C-Jump board game
	ISSUES, RECOMMENDATIONS AND SUMMARY
	5.1	Issues Emerging from the Study
	Object Of The Game
	Playing the Game
	Keyword ﬁcontinueﬂ forces the skier back to ﬁwhileﬂ. The skier moves accordingly to the number rolled on the dice. If there is more than one step in the move, the skier exits the loop and follows the blue trail.
	ﬁreturnﬂ statement returns skiers to the ski base. Regardless of a number rolled, the skier moves past the FINISH line.
	
	Finishing the Game
	To complete their goal, skiers must cross the FINISH line by exact number of steps, counting FINISH location as a square. If the number of steps is too big, the player must choose another skier, or skips the turn.


